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a b s t r a c t

Location-routing is a branch of locational analysis that takes into account distribution aspects. The location-
arc routing problem (LARP) considers scenarios where the demand is on the edges rather than being on the
nodes of a network (usually a road network is assumed). Examples of such scenarios include locating
facilities for postal delivery, garbage collection, road maintenance, winter gritting and street sweeping. This
paper presents some heuristic approaches to tackle the LARP, as well as some proposals for benchmark
instances (and corresponding results). New constructive and improvement methods are presented and used
within different metaheuristic frameworks. Test instances were obtained from the capacitated arc routing
problem (CARP) literature and adapted to address the LARP.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Location-routing problems (LRP) deal with the combination of
two types of decisions that often arise: the location of facilities and
the design of the distribution routes. While most LRP papers
address node routing (see for example [1,2]), one may consider
several scenarios where the demand is on the edges rather than
being on the nodes of a network (usually a road network is
assumed). These problems are referred to in the literature as
location-arc routing problems (LARPs), and are derived from the
capacitated arc routing problem (CARP) [3].

The LARP is typically overlooked in the literature. It has been
shown that node routing problems can be converted into arc routing
problems (the capacitated vehicle routing problem – CVRP – can be
transformed into the CARP [4]), and that the reverse is also possible,
replacing each arc by three [5] or two vertices [6,7], making the two
classes of problems equivalent (the same holds true for their location
counterparts: the capacitated LRP and the LARP).

Still, for the three transformations of the CARP into the CVRP,
the resulting instance requires either fixing of variables or the use
of edges with infinite cost. Moreover, the resulting CVRP graph is a
complete graph of larger size. Hence, the transformation increases
the problem size and the planar structure of a usual CARP graph is

lost [8] dramatically changing the number of edges from linear to
quadratic. The same can be extrapolated to the LARP, motivating
its study using dedicated methods and algorithms.

The first work on the LARP, by Levy and Bodin [9], intended to
tackle a practical problem arising in the scheduling of postal
carriers in the United States postal service. The developed algo-
rithm used the location–allocation–routing (L–A–R) concept
described by [10] for the LRP, which includes three steps: firstly,
depots are to be located using a depot selection procedure;
secondly, arcs with demand are to be allocated to depots; thirdly,
an Euler tour route of minimum traverse cost is determined for
each set of arcs allocated to depots.

Ghiani and Laporte [11] addressed an undirected LARP, called the
location rural postman problem, in which depots are to be located
and routes to be drawn (serving edges with demand), at minimum
cost, in an undirected graph. The authors show that the problem can
be transformed into a rural postman problem if there is a single
depot to open or no bounds on the number of depots. Using an exact
branch-and-cut approach they solve the transformed problem.

In subsequent work by Ghiani and Laporte [3] a set of common
applications for the LARP is mentioned (mail delivery, garbage
collection and road maintenance). Furthermore the authors define
the LARP as an extension of one of the three classical arc routing
problems: the Chinese postman problem, the rural postman pro-
blem, and the CARP. The authors also present some insight into
heuristic approaches using the decomposition of the problem into
location (L), allocation (A) and routing (R) [10]: location–allocation–
routing (L–A–R) and allocation–routing–location (A–R–L).
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Muyldermans [12] presents a variant of the LARP: the p dead-
mileage problem. In this problem, unlike the previously addressed
LARPs, splitting of the demand is allowed, that is, the client can be
serviced more than once. The objective is to minimize dead-
mileage (deadheading) and the problem is solved exactly.

Finally, the works by Pia and Filippi [13] and Amaya et al. [14]
address variants of the CARP with a structure similar to the LARP,
respectively, the CARP with mobile depots and the CARP with refill
points. In the first, two different types of vehicles are considered:
compactors and satellites. Compactors can be seen as mobile
depots for the satellites. The second problem considers servicing
of arcs by vehicles that must be refilled at certain nodes (to be
determined) in order to complete the service.

From the previously mentioned variants, the LARP addressed
here is the one studied by Ghiani and Laporte [11] which can be
seen as the arc routing equivalent to the capacitated LRP, and thus
an extension to the CARP.

In this paper some heuristic approaches are presented to tackle
the LARP, as well as some proposals for benchmark instances (and
corresponding results). Regarding the heuristic approaches new
constructive and improvement methods are developed and used
within different metaheuristic frameworks. The test instances
were obtained from the CARP literature and adapted to address
the LARP.

The remainder of this paper is outlined as follows. In Section 2
a formal definition of the problem is given. Constructive methods
and improvement heuristics are presented in Section 3, and used
within different metaheuristic frameworks proposed in Section 4.
The developed test instances are addressed in Section 5 as well as
the corresponding computational results. Finally, conclusions and
future research directions are presented in Section 6.

2. Problem definition

The LARP consists of determining simultaneously depot loca-
tion and routes in a graph in order to serve a specified set of
required arcs under given operational constraints. Muyldermans
[12] has shown that, for this problem, an optimal solution exists
with the facilities located on the vertices of the graph.

Formally, the LARP can be described on a weighted and
directed graph G¼ ðV ; AÞ with vertex set V and set of arcs A.
The vertex set V contains a non-empty subset J of m potential
depot locations (JDV) with a fixed cost f j and an associated
capacity bj (jA J). Every arc a¼ ði; jÞ in the arc set A has a non-
negative traversal cost ca and a non-negative demand for service
da. The arcs with positive demand form the subset R of the arcs
required to be serviced, only once, by a fleet K of identical vehicles
with capacity Q . Vehicles start and end their route in the same
depot, and each new vehicle (or route, as it is assumed that each
vehicle performs a single route) involves a fixed cost F . The
movement from the end i of one required arc to the start j of
another required arc without servicing the traversed arcs (either
required or not) is known as “deadheading”, and has an associated
cost denoted by zij (usually the cost of the shortest path in G from
i to j).

The problem aims to determine the set of depots to be opened
in J and the tracing of the distribution routes assigned to each
open depot in such a way that the sum of fixed and traversal costs
to serve all arcs in R is minimized.

Assuming G to be connected, it is possible to transform it into a
complete graph Ĝ¼ ðV̂ ; ÂÞ where V̂ is composed of the set VR of
vertices containing the extremities of the arcs in R (VRDV), and J
(V̂ ¼ VR [ J). As Ĝ is a complete graph and VRD V̂ , R is a subset of
Â. Each arc a¼ ði; jÞ in the arc set Â has a non-negative cost ĉa
which takes on the value ca if aAR, zij otherwise.

For any subset S of vertices in V̂ , let δþ (S) (δ� (S)), be the set of
arcs leaving (entering) S, and L(S) the set of arcs with both
extremities in S. When S contains a single vertex v, δþ (v) is a
simplification for δþ (fvg). The following binary variables are used:
xak, equal to 1 if and only if arc aA Â is used in the route performed
by vehicle kAK; yj, equal to 1 if and only if depot j is to be opened;
and waj, equal to 1 if and only if the arc aAR is assigned to depot j.
The LARP can be formulated as:

ðLARPÞ min Z ¼ ∑
jA J

f jyjþ ∑
aA Â

∑
kϵK

ĉaxakþ ∑
kAK

∑
aAδþ ðJÞ

Fxak ð1Þ

s:t: : ∑
kAK

xak ¼ 1 8aAR; ð2Þ

∑
aAR

daxakrQ 8kAK ; ð3Þ

∑
aAδþ ðiÞ

xak� ∑
aAδ� ðiÞ

xak ¼ 0 8 iA V̂ ; 8kAK ; ð4Þ

∑
aAδþ ðJÞ

xakr1 8kAK ; ð5Þ

∑
aAL Sð Þ

xakr Sj j�1 8kAK ; 8SDVR; ð6Þ

∑
bAδþ ðjÞ\δ� ðVRÞ

xbkþxakr1þwaj 8aAR; 8 jA J; 8kAK; ð7Þ

∑
aAR

dawajrbjyj 8 jA J; ð8Þ

xakAf0; 1g 8aA Â; 8kAK; ð9Þ

yjAf0; 1g 8 jA J; ð10Þ

wajAf0; 1g 8aAR; 8 jA J: ð11Þ
The objective function (1) minimizes the sum of, respectively,

the fixed costs of opening the depots, the costs of all traversed
arcs, and the cost of acquiring vehicles. Constraints (2) ensure that
each required arc is serviced once by exactly one vehicle. Capacity
constraints are satisfied thanks to inequalities (3) and (8). Equal-
ities (4) are the flow conservation constraints which, coupled with
constraints (5), ensure the routes return to the departure depot.
Constraints (6) are subtour elimination constraints while the set
of constraints (7) specify that a required arc must be assigned to
a depot in case there is a route linking them. Finally, constraints
(9)–(11) define the variables. Note that integrality of waj can be
relaxed to ½0; 1� because if not pushed to 1 by (7) minimization
will choose for 0 due to (8).

It can be noted that the LARP considered here can be seen as an
extension of the CARP, where multiple depots are considered and
an additional level of decision is for locating the depots.

3. Constructive methods and improvement heuristics

As the LARP results from the combination of a facility location
problem and the CARP, both NP-hard problems [15,4], it is NP-
hard. As a consequence, large instances can hardly be solved using
exact methods; moreover, sharp bounds on the optimal value are
typically hard to obtain. The best way to tackle these problems is
then to use heuristic approaches [16] such as constructive methods
and improvement heuristics.

Constructive methods are commonly used to obtain initial solu-
tions from which improvement heuristics seek to attain better ones.
Furthermore, these approaches are often used as the first step to
many metaheuristics. In this section constructive methods (extended
augment-merge and extended merge) and improvement heuristics
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