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a b s t r a c t

The default approach for tuning the parameters of a Support Vector Machine (SVM) is a grid search in the
parameter space. Different metaheuristics have been recently proposed as a more efficient alternative,
but they have only shown to be useful in models with a low number of parameters. Complex models,
involving many parameters, can be seen as extensions of simpler and easy-to-tune models, yielding
a nested sequence of models of increasing complexity. In this paper we propose an algorithm which
successfully exploits this nested property, with two main advantages versus the state of the art. First, our
framework is general enough to allow one to address, with the very same method, several popular SVM
parameter models encountered in the literature. Second, as algorithmic requirements we only need
either an SVM library or any routine for the minimization of convex quadratic functions under linear
constraints. In the computational study, we address Multiple Kernel Learning tuning problems for which
grid search clearly would be infeasible, while our classification accuracy is comparable to that of ad hoc
model-dependent benchmark tuning methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Support Vector Machines (SVM) [4,9,15,46,47] is a Supervised
Classification technique rooted in Statistical Learning Theory [46,47],
whose success is based on the ability of building nonlinear classifiers.

LetΩ denote a data set of n records, each associated with a pair
ðxi; yiÞ, with xiARd (the predictor vector of record i) and
yiAf�1;1g (the label of record i). The SVM classifier will classify
records with predictor vectors xARd by means of a score s(x) of
the form

sðxÞ ¼ ∑
n

i ¼ 1
αiyiKðx; xiÞ; ð1Þ

where K : Rd � Rd-R is the so-called SVM kernel, see [15,26,27]
and references therein, and the coefficients αi are obtained by
solving the following concave quadratic maximization problem
with box constraints plus one linear constraint:

max ∑
n

i ¼ 1
αi� 1

2
∑
n

i ¼ 1
∑
n

j ¼ 1
αiαjyiyjKðxi; xjÞ

s:t: ∑
n

i ¼ 1
αiyi ¼ 0 αA ½0;C�n: ð2Þ

Here C40 is the so-called regularization parameter which bounds
the influence of each record i in the score function s. It is well-known

that the choice of both the kernel K and the regularization parameter C
is crucial to the SVM classification accuracy, [32]. For this reason,
tuning (i.e., choosing) the SVM parameters becomes a fundamental yet
nontrivial issue. Designing simple and effective tuning procedures will
be useful for the wide variety of practitioners using SVM.

In order to formulate the SVM parameter tuning problem, note
that, setting ϑi ¼ αi=C in (2), we obtain the equivalent problem

max ∑
n

i ¼ 1
ϑi� 1

2
∑
n

i ¼ 1
∑
n

j ¼ 1
ϑiϑjyiyjCKðxi; xjÞ

s:t: ∑
n

i ¼ 1
ϑiyi ¼ 0 ϑA ½0;1�n: ð3Þ

From this formulation it is clear that the classifier obtained using
either (2) or (3) depends on C and K through its product CK. Tuning
C40 and K in a given class of kernels K0 is therefore equivalent to
selecting K in the conic hull of K0, K¼ fCK : C40;KAK0g.

Ideally, K should be chosen by maximizing aðKÞ, the probability
of correct classification of incoming records if one classifies
following the classifier obtained from (1). Since the SVM theory
makes no distributional assumptions on the incoming data, að�Þ
cannot be evaluated, and, instead, an estimate âð�Þ based on the
training data set Ω, such as k-fold crossvalidation accuracy [30],
is used to guide the choice of K. Now the SVM parameter tuning
problem can be formulated as the optimization problem

max âðKÞ
s:t: KAK: ð4Þ
Many classes of kernels have been proposed in the literature. The
simplest model for K is the one in which the kernel is assumed to
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be proportional to a fixed base kernel K0, namely

K¼ fCK0 : C40g: ð5Þ
As K0 one can take, for instance, the so-called linear kernel,

K linðx; zÞ ¼ x> z;

yielding the standard SVMmodel [9,15,27,46,47]. A very simple yet
extremely powerful is the class of Radial Basis Function (RBF)
kernels [15,29],

K¼ fCKRBF
s : C40; s40g;

KRBF
s ðx; zÞ ¼ exp � ∑

d

i ¼ 1
ðxi�ziÞ2=s

 !
; ð6Þ

which has been extended by considering the scaling factor s to be
variable-dependent, yielding the anisotropic RBF model, see e.g. [12].
An alternative model studied, among others, in [1,12,22,38,37,
31,39,45], is the Multiple Kernel Learning (MKL) model. MKL is
especially suitable when the data set has variables of different
nature, calling for the use of different kernel models for the
different types of variables involved. In its simplest version, R
base kernels, K1;…;KR, are given, and a conic combination is
sought:

K¼ ∑
R

j ¼ 1
μjKj : μjZ0 8 j¼ 1;2;…;R

( )
: ð7Þ

Such base kernels Kj may be, for instance, RBF kernels with
different (but fixed) scaling factors sj for each j. While it is
frequently claimed that the most relevant parameters to be tuned
are the weights in the conic combination of kernels, [22], one may
also consider to tune the kernels Kj, choosing them from different
kernel sets Kj, [22], yielding

K¼ ∑
R

j ¼ 1
μjKj : μjZ0; KjAKj 8 j¼ 1;…;R

( )
: ð8Þ

This ends our review of the most popular kernel models in the
literature. At this point, it is important to stress that, the richer the
kernel class, the higher the value of the estimate â, but this does
not necessarily imply that the actual classification rate a also
improves when the kernel class is enriched, due to the so-called
overfitting phenomenon. This explains the variety of models, with
different levels of generality, that can be found in the literature,
and the need for a tuning method to be able to adapt to them.

To end with the structure of the tuning problem (4), we now
discuss its objective function and the challenges when optimizing
it. Some papers take as surrogate âð�Þ of the accuracy að�Þ a
distribution-free, but kernel-specific, bound on the probability of
misclassification, see [12,18,48]. While such functions â are usually
smooth in the parameters, allowing for the use of high-order local
search methods, other surrogates, not necessarily differentiable,
have also been proposed, [3,21,50]. Most of the papers take as â
the k-fold crossvalidation accuracy estimate, see [30]. This is also
the approach taken in this paper. Note that in this case the cost of
evaluating â is high. Indeed, evaluating â at a given set of
parameter values amounts to solving k quadratic problems of the
form (3). Also, local-search optimization methods might be not
effective because the problem is multimodal, and these methods
are challenged by the fact that the objective function is piecewise
constant, and hence gradient-type information may be useless.

In this second part of the introduction, we review proposals to
solve the resulting optimization problem. For simple kernel
models, such as (5) with one single parameter C, the tuning is
usually done by a grid search on a sufficiently big interval,
say ½2�12;212�. However, and due to the cost of evaluating the

objective function, grid search is quite inefficient, becoming
infeasible if the dimension of the parameter space is not too
small, even if the grid is not too fine. Several heuristic algorithms
have been proposed in the literature. Some are ad hoc for a particular
kernel model, such as [29], while others are metaheuristics.

An early reference on metaheuristics is [43], where a Pattern
Search approach is introduced. An improvement is proposed in [2],
where Simulated Annealing is used to screen the neighborhoods in [2].

Since [43], many other metaheuristics have been proposed in
the literature. In [13], a genetic algorithm is used for parameter
tuning within the RBF kernel model. Since the parameters are real-
valued, a 0–1 encoding, of a given precision, is used. Alternative
mutation and crossover operators for real-valued parameters are
proposed in [36]. In [19], an evolutionary algorithm based on the
so-called Covariance Matrix Adaptation Evolution Strategy, [24],
is proposed.

In [20], the so-called Efficient Parameter Selection via Global
Optimization algorithm is proposed. It is an iterative method
based on estimating the objective function given its value in a
collection of inspected solutions. This is done using an online
Gaussian process, whose parameters are chosen by maximum
likelihood. As the authors point out, this method is only compe-
titive when the dimension of the parameter space is low.

Other popular metaheuristic strategies such as Variable Neigh-
borhood Search and Ant Colony Optimization have received
perhaps less attention when tuning SVM parameters, [10,51].

Most of the existing approaches in the literature show their
performance in the RBF kernel model (6), where only two para-
meters, C and s, are to be tuned. An exception is [2], where the
anisotropic RBF kernel model [12] is considered. This is a general-
ization of the RBF kernel model in which parameters C and si (i¼1,
…,d) need to be tuned. As is the case for the anisotropic RBF
kernel, complex models, involving many parameters, can be seen
as extensions of simpler and easy-to-tune models, yielding a
nested sequence of models of increasing complexity.

In this paper we propose an algorithm which successfully
exploits this nested property of complex methods, i.e., the ability
to define a sequence of nested subproblems, with two main
advantages. First, our framework is general enough to allow one
to address, with the very same method, several popular SVM
parameter models encountered in the literature. Indeed, to illus-
trate the versatility of our algorithm, we present experiments for
an array of MKL models. MKL models have attracted a lot of
attention and many ad hoc approaches exist, see [22] for a through
review on the most successful of these approaches. Second, as
algorithmic requirements we only need a black box to train SVMs.
In other words, as soon as an SVM package, such as LIBSVM [11],
SVMTorch [14] or SVMlight [28], a general-purpose scientific
computing, Statistics or Machine Learning package such as
MATLAB, R, SAS or WEKA [49], or any routine for the minimization
of convex quadratic functions under linear constraints is at hand,
our approach is readily applicable. In contrast, some of the
specialized MKL techniques we compare with require, for instance,
Second-Order Cone Programming (SOCP) solvers, as in [1].

The remainder of the paper is structured as follows. In Section 2,
we propose our nested heuristic, which is tested in Section 2.2
against benchmark methods for different kernel models. Conclud-
ing remarks and lines of future research are outlined in Section 4.

2. The nested heuristic

In this section we propose a nested heuristic for SVM para-
meter tuning, where we assume that a nested structure for the
kernel model to be tuned and a metaheuristic are at hand. Below
we discuss these two ingredients before presenting the algorithm.
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