Computers & Operations Research 39 (2012) 2152-2160

journal homepage: www.elsevier.com/locate/caor

Contents lists available at SciVerse ScienceDirect

Computers & Operations Research

uters
& operations

A hybrid discrete differential evolution algorithm for the no-idle permutation
flow shop scheduling problem with makespan criterion

Guanlong Deng, Xingsheng Gu™

Key Laboratory of Advanced Control and Optimization for Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

ARTICLE INFO ABSTRACT

Available online 7 November 2011

Keywords:

No-idle flow shop
Scheduling
Differential evolution
Speed-up

Insert neighborhood
Local search

significant margin.

This paper presents a hybrid discrete differential evolution (HDDE) algorithm for the no-idle
permutation flow shop scheduling problem with makespan criterion, which is not so well studied.
The no-idle condition requires that each machine must process jobs without any interruption from the
start of processing the first job to the completion of processing the last job. A novel speed-up method
based on network representation is proposed to evaluate the whole insert neighborhood of a job
permutation and employed in HDDE, and moreover, an insert neighborhood local search is modified
effectively in HDDE to balance global exploration and local exploitation. Experimental results and a
thorough statistical analysis show that HDDE is superior to the existing state-of-the-art algorithms by a

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The flow shop scheduling problem (FSP) involves n jobs pro-
cessed on m machines. Each job has to be sequentially processed on
the first machine, the second machine and so on until the last
machine. The flow shop problem is then described as finding
processing sequences of the n jobs on the m machines so that a
given performance criterion is optimized. If the sequences of
processing jobs are the same for all machines, then the problem
becomes permutation flow shop scheduling problem (PFSP), which
is usually considered in the flow shop research field. No-idle
constraint requires there is no idle time between the processing of
any operations on each machine. If the no-idle constraint is added,
the no-idle PFSP is defined. The no-idle PFSP with makespan
criterion, denoted by Fm/no-idle, prmu/Cp,q, is to determine a job
sequence that minimizes the makespan, namely, the completion
time of the last job on the last machine.

It should be noted that the no-idle constraint makes the
problem significantly different, which is validated in an example
by Ruiz et al. [1], though it is known that the F2/no-idle, prmu/Cy,x
is equivalent to the two-machine Johnson problem F2/prmu/Ciax
[2], which can be solved in O(nlogn) time by Johnson’s algo-
rithm [3]. Besides, the Fm/no-idle, prmu/Cpqx should be distin-
guished from the Fm/no-idle/Cy,qx, though the F3/no-idle, prmu/
Cimax is equivalent to the F3/no-idle/Cpax [4] and some researchers
reduced FSP to PFSP without stressing the permutation constraint.

* Corresponding author. Tel.: +862164253463; fax: +862164253121.
E-mail addresses: dglag@163.com (G. Deng), xsgu@ecust.edu.cn (X. Gu).

0305-0548/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2011.10.024

The no-idle PFSP is a complex combinatorial optimization
problem with strong industrial background. The no-idle con-
straint is imposed when cost of an idle machine is high or idle
time is not allowed once a machine is started; examples are in the
fire glass processing [5] and the foundry production [6]. There-
fore, research on the no-idle PFSP is of great significance in both
theory and application.

Adiri and Pohoryles [2] were the first to address the no-idle
PFSP to minimize the sum of job completion time, i.e., Fm/no-idle,
prmu/_C;. Vachajitpan [7] was the first to consider the makespan
objective in his paper, where the mixed integer programming
(MIP) and corresponding branch and bound (B&B) method solved
some problems with small sizes. Woollam [8] firstly considered
several heuristics, including the NEH heuristic [9], to solve no-idle
PFSP. Concerning computational complexity, the F3/no-idle,
prmu/Cpax has been proved to be NP-hard by Baptiste and Lee
[10]. Before that, Garey et al. [11] proved the NP-hardness of the
F3//Cmax- In Baptiste and Lee’s paper, they also proposed a B&B
method for the Fm/no-idle, prmu/Cnqe. Saadani et al. [6] solved
the F3/no-idle, prmu/C,4 with a heuristic. Saadani et al. [12]
also proposed a traveling salesman problem (TSP)-based
approach (referred to as SGM) to solve the Fm/no-idle, prmu/Cqx.
Kamburowski [13] proposed a network representation of the
makespan that provided a better insight into the F3/no-idle,
prmu/Cnax and he pointed out an anomaly that prolonging some
processing times might result in the possible reduction in the
makespan. Kalczynski and Kamburowski [5] proposed a heuristic
named KK for the Fm/no-idle, prmu/Cy,qx With alleged computational
complexity of O(mn?). The heuristic was shown to outperform the
heuristic SGM as well as NEH heuristic adapted for no-idle problem.


www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.10.024
mailto:dglag@163.com
mailto:xsgu@ecust.edu.cn
dx.doi.org/10.1016/j.cor.2011.10.024
dx.doi.org/10.1016/j.cor.2011.10.024

G. Deng, X. Gu / Computers & Operations Research 39 (2012) 2152-2160 2153

The authors also showed that NEH performed better than SGM and
indicated that B&B method of Baptiste and Lee [10] is only
applicable for very small instances. In addition, Kalczynski and
Kamburowski [14] developed the network representation of make-
span in the Fm/no-idle, prmu/Cy,qy, and gave some efficiently solvable
special cases and some lower bounds on makespan. As of late, Baraz
and Mosheiov [15] presented an O(mn>) greedy algorithm (referred
to as GH_BM in this paper as in [1]) for the Fm/no-idle, prmu/Cpax.
GH_BM was shown to perform better than SGM heuristic, but the
authors bypassed the KK heuristic. In two similar papers, Pan and
Wang [16,17] proposed a discrete particle swarm algorithm (HDPSO)
and a discrete differential evolution (DDE;s) for the same problem,
respectively. In these two papers, a speed-up method was proposed
to evaluate the whole insert neighborhood of a job permutation with
(n—1)* neighbors. This reduced the computational complexity of
evaluating the whole insert neighborhood from O(mn®) to O(mn?).
Both algorithms were shown to be better than GH_BM, KK, and NEH,
the result also indicated that KK was better than NEH and that NEH
was better than GH_BM. A comprehensive survey and research were
done by Ruiz et al. [1]. Their results indicated that the iterated greedy
method (IG;s) by Ruiz and Stutzle [18] outperformed existing
methods (including HDPSO and DDEs). Goncharov and Sevastyanov
[4] proposed several polynomial time heuristics based on a geome-
trical approach for the Fm/no-idle/C,.; however, neither computa-
tional experiments nor comparisons were provided.

The differential evolution (DE) algorithm, proposed by Storn and
Price [19], is a simple yet powerful population-based stochastic
search technique for real parameter optimization. It has successfully
been applied to diverse domain of science and engineering. In DE,
new candidates are generated by mutation and crossover operators
and a one-to-one competition scheme greedily deciding whether
the new candidates will survive in the next generation. As for
scheduling problems, DE has been applied in permutation flow shop
scheduling [20], no-wait permutation flow shop scheduling [21], etc.
However, there has to be conversion from real domain to discrete
domain because of the discrete characteristics of scheduling. In their
two papers, Tasgetiren et al. [22] proposed a discrete differential
evolution (DDE) algorithm for scheduling problems, and Pan and
Wang [17] presented a DDE with local search (aforementioned
DDE,s) in no-idle permutation flow shop scheduling.

This paper focuses on presenting an effective hybrid discrete
differential evolution (HDDE) algorithm for the Fm/no-idle, prmu/
Cimax- In the proposed HDDE, individuals are to be represented as
job permutations, and new candidates are to be generated in a
simple but effective way. Besides, a novel speed-up method
distinct from accelerations in [16,17] will be proposed to evaluate
the whole insert neighborhood of a job permutation with (n—1)?
neighbors, which is inspired by the network representation of
makespan [14]. Based on the speed-up method, a modified effective
insert neighborhood local search will be imbedded in HDDE to
balance global exploration and local exploitation. To validate the
effectiveness and efficiency of the proposed algorithm, an extensive
computational campaign will be provided.

The remainder of the paper is organized as follows: Section 2
provides the formulation of the Fm/no-idle, prmu/Cpqx. In Section 3,
a novel speed-up method for the insert neighborhood is proposed.
Section 4 elaborates the proposed HDDE. Section 5 gives a
comprehensive computational results and comparisons. Finally,
we summarize the contribution and draw some conclusions of this
paper in Section 6.

2. Formulation of the Fm/no-idle, prmu/C,qx

The no-idle PFSP with makespan criterion can be described as
follows: there are a set of n jobs N={1, 2,...,n} and a set of m

machines M={M,, M5,...,M,,,}. Each job is available at time zero and
has to be processed first on machine My, next on machine M, and so
on until on machine M,,. The time required for jobj (j=1, 2,...,n) on
machine M; (i=1, 2,...,m) is given as p;, Each machine can process at
most one job at a time and each job can be processed only on one
machine at a time. The processing of a given job at a machine cannot
be interrupted once started. The sequence in which the jobs are to
be processed is the same for each machine. To satisfy the no-idle
constraint, idle time between consecutive operations on each
machine is not allowed, which means each machine must process
all jobs without interruption from the start of the first job to the
completion of the last job. In this paper, the makespan criterion is
considered, so the problem is then to find a schedule minimizing the
makespan.

Let the job permutation 7w=(7(1),7(2),...,m(n)) represent the
schedule of jobs to be processed, and Cpgy(7) be the makespan of
7. To calculate Cpax(7), we adopt some findings of paper [5,14],
which will be applied to inspire the speed-up method later.

Let Cnax(7; A,B) be the makespan of 7 in the permutation flow
shop with two machines A and B in series and let g; and b; be the
processing times of job j on A and B, respectively. Cpnax(7; A,B) is
the length of critical path in the network shown in Fig. 1 and can

|
|
I
|
g‘

ee;ee

Fig. 2. Network for computing the makespan Cpax (7).



Download English Version:

https://daneshyari.com/en/article/474700

Download Persian Version:

https://daneshyari.com/article/474700

Daneshyari.com


https://daneshyari.com/en/article/474700
https://daneshyari.com/article/474700
https://daneshyari.com

