
On single-walk parallelization of the job shop problem solving algorithms

Wojciech Bożejko n

Institute of Computer Engineering, Control and Robotics, Wroc!aw University of Technology, Janiszewskiego 11-17, 50-372 Wroc!aw, Poland

a r t i c l e i n f o

Available online 18 November 2011

Keywords:

Job shop problem

Parallel programming

PRAM

a b s t r a c t

New parallel objective function determination methods for the job shop scheduling problem are

proposed in this paper, considering makespan and the sum of jobs execution times criteria, however,

the methods proposed can be applied also to another popular objective functions such as jobs tardiness

or flow time. Parallel Random Access Machine (PRAM) model is applied for the theoretical analysis of

algorithm efficiency. The methods need a fine-grained parallelization, therefore the approach proposed

is especially devoted to parallel computing systems with fast shared memory (e.g. GPGPU, General-

Purpose computing on Graphics Processing Units).

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are proposing new parallel objective function
determination methods for the job shop scheduling problems. We
are considering an algorithm (e.g. metaheuristic: tabu search,
scatter search, etc.) which employs a single process to guide the
search. The thread performs in a cyclic way (iteratively) two
leading tasks:

(A) objective function evaluation for a single solution or a set of
solutions,

(B) management, e.g. solution filtering and selection, collection of
history, updating.

Part (B) takes statistically 1–3% total iteration time, thus its
acceleration is useless. Part (A) can be accelerated in a multi-
thread environment in various manners—our aim is to find either
cost-optimal method or non-optimal one in terms of cost while
offering the shortest running time. It is noteworthy to observe that
if Part (B) takes b percentage of the 1-processor algorithm and if it
is not parallelizable, the speedup of the parallel algorithm for any

number of processors p cannot be greater than 1=b (according to
Amdahl’s law). In practice, if Part (B) takes 2% of the total
execution time, the speedup can achieve at most the value of 50.

There are only a few papers dealing with parallel algorithms
for the job shop scheduling problem, which has a relatively
simple formulation and which is very interesting from the
theoretical and practical points of view—many real manufactur-
ing systems can be modeled just as the job shop, i.e. in construc-
tion projects, chemistry, electronics, etc. It is also considered as an

indicator of practical efficiency of the new scheduling algorithms
(see [7]). Bożejko et al. [2] proposed a single-walk parallelization
of the simulated annealing metaheuristic for the job shop pro-
blem. Steinhöfel et al. [14] described the method of parallel
objective function determination in Oðlog2oÞ time on Oðo3Þ pro-
cessors, where o is the number of all operations. Bożejko [1]
considered a method of parallel objective function calculation for
the flow shop problem, which constitutes a special case of the job
shop problem. Here we are proposing a more efficient version of
the algorithm developed by Steinhöfel et al., which works in
Oðlog2oÞ time on Oðo3=log oÞ processors. Besides, we show a cost-
optimal parallelization which takes a time O(d), where d is the
number of layers in the topological sorted graph representing a
solution. Finally, we prove that this method has a constant
O(1) time complexity if we know the value of the upper bound
of the objective function value.

Algorithms proposed in this paper are placed in proofs of
theorems – they are constructive ones. The main result – the
algorithm of the objective function value determination – is placed
in the proof of the Theorem 3, and its practical aspects are described
in Section 6.

2. Parallel computations model

We make a complexity analysis of the objective function
determination algorithms for their implementations on Parallel
Random Access Machine (PRAM model). A PRAM consists of many
cooperating processors, each being a random access machine
(RAM), commonly used in theoretical computer science. Each
processor can make local calculations, e.g. additions, subtractions,
shifts, conditional and unconditional jumps and indirect addres-
sing. All the processors in the PRAM model are synchronized and
have access to a shared global memory in constant time O(1).

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2011.11.009

n Tel.: þ48 713202961.

E-mail address: wojciech.bozejko@pwr.wroc.pl

Computers & Operations Research 39 (2012) 2258–2264

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.11.009
mailto:wojciech.bozejko@pwr.wroc.pl
dx.doi.org/10.1016/j.cor.2011.11.009
dx.doi.org/10.1016/j.cor.2011.11.009

There is also no limit on the number of processors in the machine,
and any memory cell is uniformly accessible from any processor.
The amount of shared memory in the system is not limitable. We
make use of two kinds of PRAMs: CREW (Concurrent Read

Exclusive Write) where processors can read from the same
memory cell concurrently, and EREW (Exclusive Read Exclusive

Write) where the concurrency of reading is forbidden. Both
models resemble the GPU programming model. We take advan-
tage of the following well-known facts for the PRAM parallel
computer model [5]:

Fact 1. Sequence of prefix sums ðy1,y2, . . . ,ynÞ of input sequence

ðx1,x2, . . . ,xnÞ such, that yk ¼ yk�1þxk ¼ x1þx2þ � � � þxk for

k¼ 2;3, . . . ,n where y1 ¼ x1 can be calculated in Oðlog nÞ time on

the EREW PRAM machine with Oðn=log nÞ processors.

According to the above statement we can assume that the sum
of n values can be calculated in Oðlog nÞ time on Oðn=log nÞ –
processors EREW PRAMs.

Fact 2. The minimal and the maximal value of input sequence

ðx1,x2, . . . ,xnÞ can be determined in Oðlog nÞ time on the EREW PRAM

machine with Oðn=log nÞ processors.

If we do not have enough large number of processors, we can
use the following fact to keep the same cost [5]:

Fact 3. If the algorithm A works on p – processors PRAM in t time,
then for every p0op there exists an algorithm A0 for the same

problem which works on p0 – processors PRAM in Oðpt=p0Þ time.

The speedup and cost of a parallel algorithm as compared to a
sequential algorithm are two commonly used criteria to evaluate
parallel algorithms. Let us consider a problem F and a parallel
algorithm Apar. Let us define TApar

ðpÞ – time of calculations of the
algorithm Apar, which is necessary to solve the problem F on the
machine using p processors. Let TAseq

be a time of calculations of
the best (the fastest) known sequential algorithm Aseq which
solves the same problem F on the sequential machine with the
processor identical to processors of the parallel machine. We
define the speedup SApar

ðpÞ ¼ TAseq
=TApar

ðpÞ. The cost CApar
ðpÞ of

solving a problem by using an algorithm Apar in a p – processors
parallel machine is defined as CApar

ðpÞ ¼ p � TApar
ðpÞ. This cost is the

aggregated time that the processors require for solving the
problem.

For sequential algorithms the problem solving time by the
fastest known algorithm using one processor constitutes also its
cost. We can state that a parallel algorithm is cost-optimal if its
executing cost in a parallel system is linearly proportional to the
execution time of the fastest known sequential algorithm on one
processor.

3. The job shop problem

Let us consider a set of jobs J ¼ f1;2, . . . ,ng, a set of machines
M¼ f1;2, . . . ,mg and a set of operations O¼ f1;2, . . . ,og. The set O
is decomposed into subsets connected with jobs. A job j consists
of a sequence of oj operations indexed consecutively by
(lj�1þ1,lj�1þ2, . . . ,ljÞ which have to be executed in this order,
where lj ¼

Pj
i ¼ 1 oi is the total number of operations of the first j

jobs, j¼ 1;2, . . . ,n, l0¼0,
Pn

i ¼ 1 oi ¼ o. An operation i has to be
executed on machine viAM without any idleness in time pi40,
iAO. Each machine can execute at most one operation at a time. A
feasible solution constitutes a vector of times of the operation
execution beginning S ¼ ðS1,S2, . . . ,SoÞ such that the following
constraints are fulfilled:

Slj�1þ1Z0, j¼ 1;2, . . . ,n, ð1Þ

SiþpirSiþ1, i¼ lj�1þ1, lj�1þ2, . . . ,lj�1, j¼ 1;2, . . . ,n, ð2Þ

ðSiþpirSjÞ or ðSjþpjrSiÞ, i,jAO, vi ¼ vj, ia j: ð3Þ

Certainly, Cj ¼ Sjþpj. An appropriate criterion function has to be
added to the above constraints. The most frequent are the
following two criteria: minimization of the makespan and mini-
mization of the sum of job finishing times. From the formulation
of the problem we have Cj � Clj , jAJ .

The first criterion, the time of finishing all the jobs:

CmaxðSÞ ¼ max
1r jrn

Clj , ð4Þ

corresponds to the problem denoted as JJCmax in the literature.
The second criterion, the sum of job finishing times:

CðSÞ ¼
Xn

j ¼ 1

Clj , ð5Þ

corresponds to the problem denoted as JJ
P

Ci in the literature. In
fact, we can distinguish a wider class of problems, with the objective
function form of fmax and

P
f i, where f max ¼max1r irnf iðCiÞ andP

f i ¼
Pn

i ¼ 1 f iðCiÞ, for any non-decreasing functions fi (such as a
flow time, sum of completion times, tardiness, makespan, etc.).

Both problems, with makespan and with the sum of job
finishing times, are strongly NP-hard and although they are
similarly modeled, the second one is found to be harder because
of the lack of some specific properties (so-called block properties,
see [11]) used in optimization of execution time of solution
algorithms.

Because of NP-hardness of the problem heuristics and meta-
heuristics are recommended as ‘the most reasonable’ solution
methods. The majority of these methods refer to the makespan
minimization (e.g. [9,13,8,12,3]).

3.1. Models and properties

The most commonly used models of job shop scheduling
problems are based on the disjunctive or the combinatorial
approaches. Both these models are presented in this section.

3.1.1. Disjunctive model

The disjunctive model (see [11]) is most commonly used,
However, it is very unpractical from the point of view of efficiency
(and computational complexity). It is based on the notion of
disjunctive graph G¼(O,U [VÞ. This graph has a set of vertices O

which represent operations, a set of so-called conjunctive arcs
(i.e. directed) which show technological order of operation
execution:

U ¼
[n

j ¼ 1

[lj�1

i ¼ lj�1þ1

fði,iþ1Þg ð6Þ

and the set of disjunctive arcs (non-directed) which show possi-
ble schedule of operations execution on each machine:

V ¼
[

i,jAO,ia j,vi ¼ vj

fði,jÞ,ðj,iÞg: ð7Þ

A sample disjunctive graph is presented on Fig. 1 (numbers near
vertices are operation numbers, jobs are placed in rows and
connected by solid arrows; disjunctive arcs are drawn as broken
lines). Disjunctive arcs fði,jÞ,ðj,iÞg are, in fact, pairs of directed arcs
with inverted directions which connect vertices i and j. A vertex
iAO has a weight pi which equals the time of execution of
operation Oi. Arcs have the weight zero. A choice of exactly one
arc from the set {(i,jÞ, (j,iÞ} corresponds to determining a schedule
of operations execution—‘i before j’ or ‘j before i’. A subset W � V

consisting of exclusively directed arcs, at most one from each pair

W. Bożejko / Computers & Operations Research 39 (2012) 2258–2264 2259

Download English Version:

https://daneshyari.com/en/article/474711

Download Persian Version:

https://daneshyari.com/article/474711

Daneshyari.com

https://daneshyari.com/en/article/474711
https://daneshyari.com/article/474711
https://daneshyari.com

