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ARTICLE INFO ABSTRACT

Available online 1 October 2010 This paper presents a new algorithm for derivative-free optimization of expensive black-box objective
Keywords: functions subject to expensive black-box inequality constraints. The proposed algorithm, called
Constrained optimization ConstrLMSRBF, uses radial basis function (RBF) surrogate models and is an extension of the Local Metric
Derivative-free optimization Stochastic RBF (LMSRBF) algorithm by Regis and Shoemaker (2007a) [1] that can handle black-box
Large-scale optimization inequality constraints. Previous algorithms for the optimization of expensive functions using surrogate
Radial basis function models have mostly dealt with bound constrained problems where only the objective function is
Surrogate model expensive, and so, the surrogate models are used to approximate the objective function only. In

Expensive function

! ! contrast, ConstrLMSRBF builds RBF surrogate models for the objective function and also for all the
Stochastic algorithm

constraint functions in each iteration, and uses these RBF models to guide the selection of the next point
where the objective and constraint functions will be evaluated. Computational results indicate that
ConstrLMSRBEF is better than alternative methods on 9 out of 14 test problems and on the MOPTAO8
problem from the automotive industry (Jones, 2008 [2]). The MOPTAO8 problem has 124 decision
variables and 68 inequality constraints and is considered a large-scale problem in the area of expensive
black-box optimization. The alternative methods include a Mesh Adaptive Direct Search (MADS)
algorithm (Abramson and Audet, 2006 [3]; Audet and Dennis, 2006 [4]) that uses a kriging-based
surrogate model, the Multistart LMSRBF algorithm by Regis and Shoemaker (2007a) [1] modified to
handle black-box constraints via a penalty approach, a genetic algorithm, a pattern search algorithm, a
sequential quadratic programming algorithm, and COBYLA (Powell, 1994 [5]), which is a derivative-free
trust-region algorithm. Based on the results of this study, the results in Jones (2008) [2] and other
approaches presented at the ISMP 2009 conference, ConstrLMSRBF appears to be among the best, if not
the best, known algorithm for the MOPTAOS8 problem in the sense of providing the most improvement
from an initial feasible solution within a very limited number of objective and constraint function

evaluations.
© 2010 Elsevier Ltd. All rights reserved.
1. Introduction of number of decision variables and constraints) in the general
area of surrogate model-based expensive black-box optimization
1.1. Motivation and problem statement and it is designed to obtain good solutions after only a relatively
small number of objective and constraint function evaluations.
In many engineering optimization problems, the objective and Computational results demonstrate the effectiveness of this
constraint functions are black-box functions that are outcomes of ~ method on a large-scale optimization problem from the auto-
computationally expensive computer simulations and the deriva-  motive industry involving 124 decision variables and 68 inequal-

tives of these functions are usually not available. This paper ity constraints, and on a collection of 14 constrained optimization
presents a new method for derivative-free optimization of  test problems, four of which are engineering design problems.
expensive black-box objective functions subject to expensive Our focus is to solve an optimization problem of the following
black-box inequality constraints. The proposed method uses form:

multiple radial basis function (RBF) surrogate models to approx-
imate the expensive objective and constraint functions and uses
these models to identify a promising point for function evaluation st. xeRY a<x<b

in each iteration. The method can be used for constrained g(x)<0, i=12,....m 1)
optimization problems that are considered large-scale (in terms

min f(x)

where f, g1, ..., gn are deterministic black-box functions that are
E-mail address: rregis@sju.edu computationally expensive and a,b e R%. Future work will address
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the case where there is noise in the objective and constraint
functions and also when there are explicit linear inequality or
equality constraints. We assume that the derivatives of f, g1, ..., gm
are unavailable, which is the case in many practical applications.
Define the vector-valued function g(x)=(g(x),....gm(x)) and let
D= {xeR? : g(x) <0,a <x < b} be the search space of the above
optimization problem. Furthermore, we assume that f, g4, ..., gn
are all continuous on [a,b] so that D is a compact subset of RY and
fis guaranteed to have a global minimum point over D. We also
assume that the values of fand g=(g, ..., gn) for a given x € [a,b]
can be obtained from computer simulations and that the
simulator will not crash for any input x € [a,b]. Future work will
also address the case when the simulator crashes for some
x e[a,b].

Ideally, we would like to obtain a global minimum point for f
over D using only a relatively small number of objective and
constraint function evaluations. However, it usually takes a large
number of function evaluations to guarantee that the solution
obtained is even approximately optimal on low-dimensional bound
constrained problems. For high-dimensional problems, finding the
global minimum within a reasonable number of function evalua-
tions is almost impossible (and hence not realistic) for general
black-box problems with black-box constraints. Hence, most
practitioners are typically concerned with obtaining a reasonably
good feasible solution given a severe computational budget on the
number of function evaluations. Although real-world optimization
problems typically involve multiple local minima, the proposed
algorithm focuses more on finding good local solutions from a
given feasible starting point. Future work will consider infeasible
starting points and more global approaches, including a multistart
approach for expensive nonlinearly constrained problems that can
be effectively combined with this local search method. However, in
theory, the proposed method can find the global minimum of the
above optimization problem if it is allowed to run indefinitely
using a convergence argument similar to that used in Regis and
Shoemaker [1]. Moreover, previous experience with the LMSRBF
algorithm [1] indicates that the proposed method can deal
with rugged landscapes similar to those found in groundwater
bioremediation problems.

1.2. Related Work

When the objective function f{x) and the constraint functions
g1(x),....8m(x) are smooth and f(x) is not riddled with local
minima, then the traditional optimization approach is to use a
gradient-based local minimization algorithm. In addition, if a
global minimum is desired, then this local minimization algo-
rithm can be used in conjunction with a multistart approach for
constrained optimization such as OQNLP [6] or the Tabu
Tunneling or Tabu Cutting Method [7]. However, in many
practical applications, the derivatives of the objective and
constraint functions are not explicitly available so they would
have to be obtained by automatic differentiation or finite-
differencing. Unfortunately, automatic differentiation does not
always produce accurate derivatives and it cannot be used when
the complete source codes for the objective and constraint
functions are not available. Moreover, finite-differencing may be
unreliable when the objective function or the constraint functions
are nonsmooth. Hence, many practitioners rely on derivative-free
optimization methods (or direct search methods) [8,9] such as
pattern search [10], Mesh Adaptive Direct Search (MADS)
[3,4] and derivative-free trust-region methods [11,9,12-14].
Furthermore, derivative-free heuristic methods such as
simulated annealing, evolutionary algorithms (e.g., genetic
algorithms, evolution strategies and evolutionary programming),

differential evolution [15,16], and scatter search [17-20] are also
used to solve constrained optimization problems.

When the objective and constraint functions are computation-
ally expensive black-box functions, a suitable optimization
approach is to use response surface models (also known as
surrogate models or metamodels) for these expensive functions.
Here, the term response surface model is used in a broad sense to
mean any function approximation model such as polynomials,
which are used in traditional response surface methodology [21],
radial basis functions (RBF) [22,23], kriging [24,25], regression
splines, neural networks and support vector machines. Note that
the RBF model described in Powell [23] is equivalent to a form of
kriging called dual kriging (see Cressie [25]).

The use of response surface models for expensive black-box
optimization has become widespread within the last decade. For
example, polynomial and kriging response surface models have
been used to solve aerospace design problems [26,27]. Kriging
interpolation was used by Jones et al. [28] to develop the EGO
method, which is a global optimization method where the next
iterate is obtained by maximizing an expected improvement
function. A variant of the EGO method was used by Aleman et al.
[29] to optimize beam orientation in intensity modulated
radiation therapy (IMRT) treatment planning. Villemonteix et al.
[30] also used kriging to develop the IAGO method, which uses
minimizer entropy as a criterion for determining new evaluation
points. RBF interpolation was used by Gutmann [31] to develop a
global optimization method where the next iterate is obtained by
minimizing a bumpiness function. Variants of this RBF method
were developed by Bjorkman and Holmstrom [32] and by
Regis and Shoemaker [33]. Kriging was used in conjunction
with pattern search to solve a helicopter rotor blade design
problem [34] and an aeroacoustic shape design problem [35].
Egea et al. [36] also used kriging to improve the performance
of scatter search on computationally expensive problems.
Finally, derivative-free trust-region methods for unconstrained
optimization (e.g., Conn et al. [11], Powell [5,12,13], Wild et al.
[14]) use local interpolation models of the objective function
using a subset of previously evaluated points.

Most of the surrogate model-based optimization methods
mentioned above can only be used for bound constrained
problems where only the objective function is expensive.
Relatively few surrogate model-based approaches have been
developed for optimization problems involving nonlinear con-
straints. For example, the CORS method by Regis and Shoemaker
[37] can be used for problems involving inexpensive and
explicitly defined nonlinear constraints. The Adaptive Radial
Basis algorithm (ARBF) by Holmstrom et al. [38] can handle
nonlinear constraints that are either inexpensive or are
incorporated into the objective function via penalty terms.
ASAGA (Adaptive Surrogate-Assisted Genetic Algorithm) [39]
also handles constraints via a penalty and uses a surrogate
model to approximate the fitness function for a genetic algorithm.
For optimization problems involving an expensive objective
function and expensive black-box inequality constraints, there
are even fewer surrogate model-based methods that do not use
penalty terms to handle the black-box constraints. For example,
the NOMADm software by Abramson [40] implements the MADS
algorithm [3,4] for constrained optimization and it has the option
of using a kriging surrogate model to improve the performance of
MADS on computationally expensive problems. COBYLA [5] is a
derivative-free trust region method for constrained optimization
that uses linear interpolation models of the objective and
constraint functions. Kleijnen et al. [41] recently developed a
method for constrained nonlinear stochastic optimization that
uses kriging models of the stochastic black-box objective and
constraint functions but the decision variables are required to be
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