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One aspect that is often disregarded in the current research on evolutionary multiobjective optimization
is the fact that the solution of a multiobjective optimization problem involves not only the search itself,
but also a decision making process. Most current approaches concentrate on adapting an evolutionary
algorithm to generate the Pareto frontier. In this work, we present a new idea to incorporate preferences
into a multi-objective evolutionary algorithm (MOEA). We introduce a binary fuzzy preference relation
that expresses the degree of truth of the predicate “x is at least as good as y”. On this basis, a strict
preference relation with a reasonably high degree of credibility can be established on any population.
An alternative x is not strictly outranked if and only if there does not exist an alternative y which is
strictly preferred to x. It is easy to prove that the best solution is not strictly outranked. For validating
our proposed approach, we used the non-dominated sorting genetic algorithm II (NSGA-II), but replacing
Pareto dominance by the above non-outranked concept. So, we search for the non-strictly outranked
frontier that is a subset of the Pareto frontier. In several instances of a nine-objective knapsack problem
our proposal clearly outperforms the standard NSGA-II, achieving non-outranked solutions which are in
an obviously privileged zone of the Pareto frontier.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In real-world optimization problems, the decision-maker (DM) is
usually concerned with several criteria which determine the quality
of solutions. Often, constraints in mathematical programming prob-
lems are not actually mandatory; instead, such restrictions are ex-
pressing an important desire, a significant DM aspiration level about
certain system properties. Therefore, most optimization problems
can be represented from a multiple objective perspective.

As a consequence of the conflicting nature of the criteria, it is not
possible to obtain a single optimum, and, consequently, the ideal so-
lution of a multiobjective problem (MOP) cannot be reached. Hence,
to solve a MOP means to find the best compromise solution accord-
ing to the DM's particular system of preferences (value system). It is
easy to prove that the best compromise is a non-dominated solution
(i.e., a member of the Pareto optimal set). Most operations research
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methods for MOPs can be classified into the following categories [1]:

(1) Techniques which perform an a priori articulation of the DM's
preferences.

(2) Interactive methods, which perform a progressive articulation of
the DM' preferences.

(3) Generating techniques, which perform an a posteriori articulation
of the DM's preferences (search before making decisions).

Since David Schaffer's seminal work (cf. [2]), multi-objective evo-
lutionary algorithms (MOEAs) have become a very popular search
engine for solving multiobjective programming problems. MOEAs
are very attractive to solve MOPs because they deal simultaneously
with a set of possible solutions (the MOEA's population) which
allows them to obtain an approximation of the Pareto frontier in
a single algorithm's run. Thus, by using MOEAs the DM and/or
the decision analyst does not need to perform a set of separate
single-objective optimizations as normally required when using
operations research methods. Additionally, MOEAs are more robust
regarding the shape or continuity of the Pareto front, whereas these
two issues are a real concern for classical optimization methods (cf.
[3]). However, one aspect that is often disregarded in the MOEAs
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literature is the fact that the solution of a problem involves not only
the search process, but also (and normally, more important) the de-
cision making process. Most current approaches in the evolutionary
multiobjective optimization literature concentrate on adapting an
evolutionary algorithm to generate an approximation of the Pareto
optimal set. Nevertheless, finding this set does not solve the prob-
lem. The DM still has to choose the best compromise solution out
of that set. This is not a very difficult task when dealing with prob-
lems having 2 or 3 objectives. However, as the number of criteria
increases, two important difficulties arise:

(a) The algorithm's capacity to find this Pareto frontier quickly de-
grades.

(b) It becomes harder, or even impossible for the DM to establish
valid judgments in order to compare solutions with several con-
flicting criteria.

Here, we propose a combined approach, with an a priori articu-
lation of preferences followed by a generating process of a specific
(i.e., desirable) zone of the Pareto frontier. Using a fuzzy outranking
relation, a strict preference relation in the sense of [4] can be estab-
lished in any population. Our proposal is based on finding a subset
of the Pareto frontier composed of solutions for which no other solu-
tions exist which are preferred to the first ones. This non-outranked
concept will be used instead of dominance when performing the
evolutionary search.

The remainder of this paper is organized as follows. An outranking
model ofmulticriteria preferences is outlined in Section 2, and on this
basis the proposed dominance generalization is detailed in Section
3. Our algorithmic proposal is discussed in Section 4 and illustrated
by some computer experiments in Section 5. Finally, we draw brief
concluding remarks in Section 6.

2. An outranking model of preferences

Let G be the set of objective functions of a multicriteria optimiza-
tion problem and O its objective space. An element x ∈ O is a vector
(x1, . . . , xn), where xi is the i-th objective value. Let us suppose that
for each criterion j there is a relational system of preferences (Pj, Ij)
(preference, indifference) which is complete on the domain of the
j-th criterion (Gj). That is, ∀(xj, yj) ∈ Gj × Gj one and only one of the
following statements is true:

− xjPjyj

− yjPjxj

− xjIjyj (1)

Formulation (1) allows indifference thresholds in order to model
some kind of imprecise one-dimensional preferences. It should be
noticed that the relational system of preferences given by (1) is more
general than the usual formulations which consider only true criteria
(that is, xj � yj implies non-indifference). Without loss of generality,
in the following we suppose that xjPjyj ⇒ xj >yj.

Let us establish the following central premise: for each (x, y) ∈
O × O, the DM and the decision analyst (working together) are
able to create a fuzzy predicate modeling the degree of truth of
the statement “x is at least as good as y from the DM's point of
view”.

Amongst different ways to create that predicate, we shall describe
below an outranking approach based on ELECTRE methods:

A proposition xSy (“x outranks y”) (“x seems at least as good as
y”) holds if and only if the coalition of criteria in agreement with
this proposition is strong enough and there is no important coalition
discordant with it (cf. [5]). It can be expressed by the following logical

yj

dj(x,y)

xj + vjxj + uj

1

Fig. 1. Partial discordance relation dj(x, y).

equivalence (cf. [6]):

xSy ⇔ C(x, y)∧ ∼ D(x, y) (2)

where C(x,y is the predicate about the strength of the concordance
coalition; D(x,y) the predicate about the strength of the discordance
coalition; ∧ and ∼ are logical connectives for conjunction and nega-
tion, respectively.

Let c(x,y) and d(x,y) denote the degree of truth of the predicates
C(x,y) and D(x,y). From (2), the degree of truth of xSy can be calcu-
lated as in the ELECTRE-III method:

�(x, y) = c(x, y) · N(d(x, y)) (3)

where N(d(x,y)) denotes the degree of truth of the non-discordance
predicate.

As in the earlier versions of the ELECTRE methods, we shall take

c(x, y) =
∑
j∈Cx,y

wj (4)

where Cx,y = {j ∈ G such that xjPjyj ∨ xjIjyj}; w's denote “weights”
(w1+w2+· · ·+wn = 1) and ∨ the symbol for disjunction.

Let Dx,y ={j ∈ G such that yjPjxj} be the discordance coalition with
xSy. The intensity of discordance is measured in comparison with a
veto threshold vj, which is themaximum difference yj−xj compatible
with �(x, y)>0. Following Mousseau and Dias [7], we shall use here
a simplification of the original formulation of the discordance indices
in the ELECTRE-III method which is given by

N(d(x, y)) = min
j∈Dx,y

[1 − dj(x, y)] (5)

dj(x, y) =

⎧⎪⎨
⎪⎩

1 iff ∇j �vj

(∇j − uj)/(vj − uj) iff uj <∇j <vj

0 iff ∇j �uj

(6)

where ∇j = yj − xj and uj is a discordance threshold (see Fig. 1).
In practical situations the decision-maker supported by a po-

tential decision-analyst should assess the set of model's parame-
ters which are needed to evaluate �. This is not an easy task, since
decision-makers usually have difficulties in specifying outranking
parameters and require an intense support by a decision analyst. To
facilitate this process, the pair DM-decision analyst can use the pref-
erence disaggregation-analysis (PDA) paradigm (cf. [8]), which has
received an increasing interest from the multicriteria decision sup-
port community. PDA infers the model's parameters from holistic
judgments provided by the DM. Those judgments may be obtained
from different sources (past decisions, decisions made for a limited
set of fictitious objects (actions), or decisions taken for a subset of
the objects under consideration for which the DM can easily make
a judgment [9]). In the framework of outranking methods PDA has
been recently approached by [10–12].
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