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Over the past two decades, several investigators have worked on computerized systems to accelerate the
identification of foraminiferal tests (forams). Leading examples have focused on fully-automatic identifica-
tion using neural networks and supervised learning. This paper introduces an alternative semi-automatic or
computer-aided approach. Such an approach reduces the workload associated with foram identification
without the challenges of training set collection and fully-automatic recognition. The proposed method
begins by photographing a collection of specimens sprinkled on a microscopy slide. Segmented images are
then mapped into a canonical space where position, rotation, and scale are normalized. Specimens are
clustered based on image similarity in the canonical space. A specialist then identifies the clusters by
inspecting representative templates. Experimental results show that the identification effort can be reduced
by 35%, yet the accuracy remains comparable to when every specimen is individually identified. Further
reduction of effort was prevented by the significant variability of illumination direction in the canonical
images. These results encourage further work on a computer-aided approach to foram identification.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

The taxonomic study of foraminiferal tests (forams) is a driving
force behind biostratigraphy (Simmons et al., 1997). Forams also play
a great role in paleoclimatology and paleooceanography as the
analysis of their morphological variance, e.g. Kelly et al. (1996), and
chemical composition, e.g. Rathburn et al. (1997) or Kennett and Stott
(1991), yields important information from the geological record. In
addition, foram study is a significant source of data in developing
geological models used to locate hydrocarbon accumulations (Breard
et al., 1993). These applications rely on having high resolution
knowledge of foram taxonomy.

However, foram taxonomy is hampered mainly in two ways. First,
traditional taxonomy requires manual examination of particles under
a microscope. This is time-consuming work requiring expert labour.
Secondly, building up a good taxonomic base necessitates the analysis
of very large volumes of particles. When coupled together, these two
issues present serious challenges for any application that depends on
detailed foram taxonomy. One way to manage these challenges is to
inject a degree of autonomy into the identification process. This has
been a recognized goal for over two decades (Thierstein et al., 1987).

Early systems attempted to incorporate the same rules that
micropaleontologists use into a computer-aided identification process

(Brough and Alexander, 1986; Riedel, 1989). A defining characteristic
of these systems was their focus not on providing automation, but on
lessening human error and training requirements. For instance, the
Visual Identification Expert System (VIDES) functions by presenting
the user with a set of identifying attributes (Swaby, 1992). For each
specimen in question, the user specified as many of the attributes as
possible until the system was able to infer the identity of the
specimen, on the basis of pre-defined rules, with good confidence.
However, as with all of these early systems, VIDES still required the
manual study of each specimen in question.

In contrast to the rule-based approach, later systems use artificial
neural networks (ANNs) to classify microfossils. A leading example is
COGNIS, developed by the Micropaleontology/Geophysiology group
at ETH Zurich (Bollmann et al., 2004). The authors report on twomain
experiments. In the first one, scanning electron microscopy was used
for multi-species classification, producing good results. The other
experiment involved optical microscopy, and it tested whether
COGNIS could identify a single species (F. profunda) from a collection
of images. While the system had a high sensitivity to the species, it
suffered from a high false positive rate. Further investigation is
required to determine whether COGNIS can produce acceptable
results with optical microscopy, the simplest and cheapest modality.
The authors concluded that it may be possible to extend their single
species system to one that identifies multiple species through the use
of parallel networks.

Along this vein, another leading system named SYRACO 2 used the
concept of parallel neural networks but applied it in a different
manner than what was proposed by the developers of COGNIS.
Originally, SYRACO 2 used a single fat neural network that operated on
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images pre-processed to be rotation and translation invariant (Dollfus
and Beaufort, 1999). Only brief details of the pre-processing were
given, and the authors were not satisfied with it. As a result, the latest
version of SYRACO 2 used six parallel neural networks to further
transform the images in five possible ways (Beaufort and Dollfus,
2004). However, even in its original form, the SYRACO 2 network used
at least 800,000 free parameters to process low-resolution
64×64 pixel images. According to ANN theory, to successfully train
such a network would require at least 800,000 images (Tarassenko,
1998). As their number of training images was much lower than this
figure, the authors admitted that they were unable to fully explain
how their network performed so well as it did in coccolith
identification. The difficulty in understanding SYRACO 2's perfor-
mance remains an obstacle towidespread adoption of this ANN-based
approach.

The state of the art in calcareous microfossil identification is
defined by extremes in terms of autonomy. At one end are the fully-
interactive rule-based systems, and at the other are the fully-
automatic ANN systems. While the former does not reduce identifica-
tion workload by much, the latter suffers from the drawbacks of
supervised learning. Problems associated with traditional foram
identification, which have motivated computerized foram identifica-
tion in the first place, present serious obstacles to the data collection
needed to train an ANN able to classify large numbers of species.
Added to this problem is the rigid nature of the training process. ANNs
and other supervised learning systems can only handle species
included in the training set. The addition of new species requires a
re-training of the entire system. This is not to say that the ANN
approach does not hold promise. However, these points motivate
efforts toward an alternative direction.

An alternative approach is to use a computer-aided system to
reduce, rather than to eliminate, identification workload. This paper
introduces such an approach and reports on preliminary experiments.
The proposed computer-aided system automatically clusters foram
images based on their visual similarity, without requiring pre-defined
knowledge about the genera and species in the specimen set. Each
such cluster is represented by a template, which is chosen auto-
matically. Providing that clusters are homogeneous, i.e. they only
contain images that are very similar, micropaleontologists need only
inspect the templates to identify entire clusters. Since the number of
specimens that must be identified is reduced to the number of
clusters, this method reduces theworkload associated with identifica-
tion. In terms of autonomy, an unsupervised clustering system can be
seen to lie in between the early rule-based systems and the later ANN
approaches.

2. Materials and methods

The proposed system begins by capturing photographs of sieved
particles dropped on an opaque glass slide. By scanning the slide
under a microscope, images of all specimens may be captured. These
images are then segmented and mapped to a canonical space using an
invariant transform (Section 2.1). Next, visual similarity is estimated
among these canonical images (Section 2.2) and used to automatically
cluster the specimens (Section 2.3). For each cluster, a template is
chosen automatically (Section 2.4) such that the template has the
highest overall similarity to all images in the cluster. A micropaleon-
tologist can use either the template image or the physical particle
indicated by the chosen template to identify the entire cluster. It is
only for this step that a specialist is needed. All other steps are
automatic.

Section 3 describes a test of the proposed system using a data set
composed of 244 specimens, made up primarily of three genera:
Morozovella (72.5%), Acarinina (15.2%), and Subbotina (9.0%). Each
specimen has a classification based on examination of the actual
particle under a microscope, and a classification based on a default

view image only, obtained without particle manipulation. The data set
suffices to demonstrate that identification workload can be reduced
significantly with the computer-aided approach. More details on the
composition and collection of the data set can be found in a related
paper (Ranaweera et al., 2009).

2.1. Invariant transform

Specimens may be arbitrarily positioned and orientated in images.
As well, they may have different scales, for example due to differences
in zoom level. Invariance against these attributes may be enforced by
transforming images prior to computerized identification. Initially,
SYRACO 2 did this using only computations of object centre, major
axis, and extremes of image luminosity (Dollfus and Beaufort, 1999).
But no details were given and the authors went on to extend their pre-
processing with six parallel neural networks (Beaufort and Dollfus,
2004). This section details a robust normalization technique, which
uses principal component analysis (PCA) and third central moments,
for the proposed computer-aided system.

2.1.1. Segmentation
For each photograph, the non-linear gamma correction built into

digital cameras (IEC, 1999) is first inverted. Resulting pixel values are
directly proportional to light intensities, and are mapped to a 0–1
range. Next, the invariant transform segments images of specimens
and generates binary silhouettes using a threshold of 0.02, which
represents the maximum background pixel value. Any holes in the
foreground are filled in morphologically (Gonzalez andWoods, 2006).

Silhouettes in a segmented image represent the physical shape of
specimens in the input image. Since the photographed particles were
obtained from sieved size fractions, limits of valid silhouette
dimensions are known a priori. Thus, the system automatically
identifies specimens that were broken after sieving, as well as those
that landed attached to each other, by simple computation of
silhouette diameter. These problematic cases are automatically
filtered out.

2.1.2. Normalization
Position, rotation, and scale are independent of illumination, so

working with a silhouette leads to an invariant transform robust to
illumination. The centroid of the silhouette is computed and is taken
as the origin for further calculations. The principal components of
points that make up the silhouette are computed in the new
coordinate space, thereby determining the rotation and scale of
principal axes (Gonzalez and Woods, 2006), as shown in Fig. 1(a) and
(b).

Once the silhouette attributes have been computed, a transform is
defined using basic image processing operations to normalize the
silhouette such that:

• The canonical silhouette is centered in an image of 640×640 pixels.
• The orientation of themajor axis, which is the orientation of the first
principal component, is horizontal in the canonical silhouette.

• The length of the first principal component, shown in Fig. 1 as half
the length of the major axis, is 128 pixels in the canonical silhouette.

Fig. 1(c) and (d) show the result of applying this transform to the
silhouette and the original image, respectively. Both of these are
required (Section 2.2).

On its own, the PCA-based mapping does not provide a unique
transformation as there is a rotational ambiguity that must be
resolved. To understand this ambiguity, consider the two silhouettes
shown in Fig. 1(c) and (e). The second silhouette is a 180° rotated
version of the first. Both of these silhouettes conform to the criteria
listed above. Exactly which one is obtained depends on numerical
round-off and the internal workings of the numerical method used to
implement PCA.
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