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a b s t r a c t

This paper deals with project portfolio selection evaluated by multiple experts. The problem consists of
selecting a subset of projects that satisfies a set of constraints and represents a compromise among the
group of experts. It can be modeled as a multi-objective combinatorial optimization problem and solved
by two procedures based on inverse optimization. It requires to find a minimal adjustment of the
expert's evaluations such that a portfolio becomes ideal in the objective space. Several distance functions
are considered to define a measure of the adjustment. The two procedures are applied to randomly
generated instances of the knapsack problem and computational results are reported. Finally, two
illustrative examples are analyzed and several theoretical properties are proved.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Project portfolio selection is a common problem that frequently
includes the evaluation of each project by multiple experts [1,2]. It
requires to select a subset of projects that satisfies a set of
constraints and represents a compromise among the group of
experts. Traditional constraints are budget satisfaction and project
dependencies.

In this paper, it is assumed that the expert's evaluations are of a
quantitative nature as illustrated in the following example. Con-
sider a company that engages a call for proposals for R&D projects
that would be operated in the forthcoming years. Each project is
then evaluated by estimating its net present value (NPV). However,
this quantity is non-unique, because it requires fixing the rate of
return and the period to observe. For example, it might be
calculated over a week or a month. As a result, a group of experts
is hired to asses the proposals. It is decided that each expert can
choose how the net present value is evaluated. Based on these
evaluations, the portfolio must maximize the net present value of
each expert and satisfy a budget constraint. This decision making
task is modeled as a multi-objective combinatorial optimization
problem, where each objective function is an expert's evaluation.

A usual approach to tackle this problem consists of building a
utility function to quantify the performance of each portfolio. A
simple way to build such a utility function would be to aggregate
the experts evaluations by the geometric or the arithmetic mean

[3–5]. In these cases, the evaluations of each expert are aggregated
in such a way that the group may be seen as a new “individual”.
This leads to a classical project portfolio problem where only one
decision maker is involved.

Another way to deal with this problem is to model it as a multi-
objective combinatorial optimization problem where each objec-
tive function is an expert's point of view over the portfolios. This
judgment is the sum of the expert's evaluation of the projects
selected in the portfolio. A portfolio is said “ideal” if it maximizes
the judgments of all experts. Let us observe that if there exists an
ideal portfolio, then there is a consensus among the experts on
this portfolio. Based on this observations, several concepts of
compromise portfolios can be defined. The first one is to find a
portfolio (or a set of portfolios) that is as close as possible to the
ideal portfolio [6]. This leads to a set of compromises, which
depend on the choice of a distance function. Let us consider the
efficient set and the ideal solution in Fig. 1. In this example, the
compromise solution with respect to the Euclidean distance is v3,
because it is the closest solution to f .

A second concept of compromise is presented in this paper. It is
based on the following observation: evaluations are not necessa-
rily precise and a slight modification of their value could be
accepted. Hence, the compromise solution may be determined
by finding a minimal adjustment of the experts' evaluations so
that an ideal portfolio exists. This leads to a new multi-objective
optimization model that is as close as possible to the original one,
where there exists an ideal solution. For example, this could lead
to transform the problem of Fig. 1 into the problem of Fig. 2, where
v2 is the compromise solution. Our approach also allows, in a
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certain sense, to measure how the experts are conflicting with
each other and could indicate potential conflicts among experts on
the evaluations of the projects.

This concept of compromise is closely related to inverse multi-
objective optimization [7]. It is defined as the minimal adjustment
of the problem parameters inducing a change (addition or removal
of solutions) in the efficient set. Indeed, it is easy to see that a
compromise can be obtained through the minimal adjustment of
the parameters, in such a way that the cardinality of the image of
the efficient set in the objective space is equal to one. However,
this precise question has not been covered yet in terms of inverse
multi-objective optimization. This constitutes the purpose of
the paper.

Two approaches are considered for finding a compromise
solution. The first one consists of solving an inverse problem, by a
cutting plane approach, for each efficient solution. The second one
consists of solving iteratively a particular linear integer program.

The proposed methods are studied from a theoretical and a
practical point of view. Several properties, such as influence of
non-discriminating experts, monotonicity, and dominance are
proved to be satisfied. Then, the compromise solutions of an
illustrative example are analyzed and compared to the ones
obtained by the Zeleny's procedure.

This paper is organized as follows. In Section 2, concepts,
definitions, and notation are introduced. In Section 3, the inverse
problem is formally defined and theoretical results are provided.
Two algorithms are proposed for finding a compromise solution by
inverse optimization in Section 3.1. The design of the experiments
and computational results are presented in Section 4. In Section 5,
an illustrative example is analyzed. We conclude with remarks and
directions for future research.

2. Concepts, definitions, and notation

Let Rn ¼ fðx1; x2;…; xj;…; xnÞ : xjAR denote the set of real-
valued vectors of length nZ1, for jA J ¼ f1;2;…;ng, and
N¼ f0;1;2;…g the set of non-negative integers. A vector xARn is
a matrix composed of 1 column and n rows, and the transpose of x,
denoted by x> , is a matrix composed of n columns and 1 row.

Multi-objective optimization consists of maximizing “simulta-
neously” several objective functions over a set of feasible solutions.
The feasible set is denoted by XDRn. The outcome of each feasible
solution xAX is denoted by a vector FðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ;…;

f iðxÞ;…; f qðxÞÞ composed of the outcomes of the q objective
functions f i : X-R, with iA I, where I ¼ f1;2;…; qg is the set of
objective subscripts.

A particular class of Multi-Objective Combinatorial Optimiza-
tion problems (MOCO) is considered. Each instance is defined by a
pair ðX;CÞ where XDfx : xAf0;1gng is the feasible set and CANq�n

is the so-called profit matrix. Each objective function f i : X-N,
with iA I, is defined by a row of the profit matrix with
f iðxÞ ¼

P
jA JCijxj.

Let x; yARn be two vectors. The following notation will be used
hereafter: xoy iff 8 jA J : xjoyj; x≦y iff 8 jA J : xjryj; xay iff
( jA J : xjayj; xry iff x≦y and xay. The binary relations ≧, Z ,
and 4 are defined in a similar way.

In multi-objective optimization, two spaces should be distin-
guished. The decision space, i.e., the space in which the feasible
solutions are defined, and the objective space, i.e., the space in
which the outcome vectors are defined. The image of the feasible
set in the objective space is denoted by Y ¼ fyARq : y¼ Cx; xAXg.

An ideal outcome vector ynARq, to an instance (X,C), is defined
by yi ¼maxfPn

j ¼ 1 Cijxj : xAXg, for all iA I. A feasible solution xAX
is said to be ideal if and only if Cx is an ideal outcome vector. Such
a solution does not always exists. Consequently, it is widely
accepted to build the dominance relation on the set Y of the
outcome vectors. Let y; y0AY be two outcome vectors such that
yay0. It is said that y dominates y0 if and only if yZy0. Dominance
is a binary relation that is irreflexive, asymmetric, and transitive.
This relation induces a partition of Y into two subsets: the set of
dominated outcome vectors and the set of non-dominated out-
come vectors. The set of non-dominated outcomes corresponding
to an instance (X,C) is denoted by NDðX;CÞ. Similarly, in the
decision space the concepts of efficient and non-efficient solutions
can be defined. A solution xnAX is efficient if and only if there is no
xAX such that CxZCxn. The set of efficient solutions correspond-
ing to an instance (X,C) is denoted by EðX;CÞ.

Let I ¼ f1;2;…; i;…; qg denote a set of experts, and J ¼
f1;2;…; j;…;ng a set of items. The evaluation of an expert iA I
over each item jA J is denoted by CijAN. The portfolio selection
problem (PSP) consists of selecting a subset SD J, such that the
sum of the evaluations of the elements belonging to S is “max-
imized” and simultaneously satisfies a set of constraints. The set of
constraints is defined by the system Ax≦b, where xAf0;1gn is the
incidence vector of S, AARm�n, and bARm. The problem can be
stated as follows:

“max” FðxÞ ¼ ff 1ðxÞ; f 2ðxÞ;…; f iðxÞ;…; f qðxÞg

Fig. 1. A set of efficient solutions fv1; v2; v3g and the ideal outcome vector f .

Fig. 2. A set of feasible solutions fv1 ; v3g and the ideal solution v2.
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