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a b s t r a c t

In this paper, we address the Unsplittable Non-Additive Capacitated Network Design problem, a variant of
the Capacitated Network Design problem where the flow of each commodity cannot be split, even
between two facilities installed on the same link. We propose a compact formulation and an aggregated
formulation for the problem. The latter requires additional inequalities from considering each individual
arc-set. Instead of studying those particular polyhedra, we consider a much more general object, the
unitary step monotonically increasing set function polyhedra, and identify some families of facets. The
inequalities that are obtained by specializing those facets to the Bin Packing function are separated in a
Branch-and-Cut for the problem. Several series of experiments are conducted on random and realistic
instances to give an insight on the efficiency of the introduced valid inequalities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The design of optimal networks has become one of the major
economic issues for nowadays telecommunications industry. Many
variants of this problem have been considered in the literature,
addressing the topology aspects as well as the installation of
capacities and the traffic routing. One of the network design pro-
blems that has received a big attention is the so-called capacitated
network design (CND) problem. Given a network with a set of
commodities and a set of potential capacitated link facilities toge-
ther with their costs, the problem consists of determining the
facilities to install on the network so that the commodities can be
routed and the total cost is minimum.

In this paper, we consider a variant of the CND problem. This
concerns the case where the commodities cannot be split. More
precisely, for its routing, each commodity must go from its origin to
its destination through only one path and must use at most one
facility on each link of the network. The latter constraint makes
impossible to aggregate the capacities installed over a link, and will
be referred to as the non-additivity of the facilities. This problem
arises in the design of telecommunication networks. In particular,
we are interested in optical networks holding a set of multiplexer
devices interconnected by optical fibres and using the so-called
OFDM (Orthogonal Frequency Division Multiplexing) technology.
Indeed, this technology consists in setting up several facilities

referred to as subbands on the links of a network. Every subband
has a certain capacity and a non-negative cost. In this context, given
an optical network, a set of commodities and a set of available
subbands, the aim is to identify the minimum cost subbands to
install on the links of the network so that the traffic may be routed.
In particular, we focus on the problem which concerns the instal-
lation of the subbands, which will permit an optimal routing. In
fact, an efficient algorithm for solving this restricted version of the
problem, which is already NP-hard, as it will be shown later, may be
useful for solving the problem of the more general multilayer ver-
sion. This is our motivation for considering the problem which will
be called the Unsplittable Non-Additive Capacitated Network Design
(UNACND) problem.

The purpose of this paper is to devise a Branch-and-Cut algo-
rithm for the UNACND problem. The algorithm is based on an
investigation of the polyhedral structure of the problem when it is
restricted to a single link. Previous works have already shown the
effectiveness of such approach for solving network design pro-
blems (see [1–3] and the references therein). Some results in this
paper are presented in a very preliminary stage in [4].

To the best of our knowledge, the UNACND problem has not
been considered before. However, other versions of the problem
have been widely discussed in the literature. In fact, the restriction
of CND to one arc has been investigated first by Magnanti et al. [5],
for two facilities and splittable flow assumption. Pochet and Wolsey
[6] study the polyhedron of a single-arc network design problem
with an arbitrary number of facilities and splittable flow assump-
tion. Brockmüller et al. [1] and van Hoesel et al. [2] investigate the
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CND restricted to one edge (the edge capacity problem). They study
the integer knapsack problem arising from this relaxation and
introduce the so-called c-strong inequalities and give necessary and
sufficient conditions for these inequalities to define facets. In [2],
the authors give conditions under which the facets of edge capacity
polytope also define facets for the CND polytope. In [3], Atamtürk
and Rajan study both splittable and unsplittable CND arc-set poly-
hedra by considering the existing capacity of the arc. They give a
linear-time separation procedure for the residual capacity inequal-
ities and show its effectiveness for the splittable CND. They also use
the c-strong inequalities and derive a second class of valid
inequalities for the unsplittable CND problem. Similar approaches
have also been used to study cut-set polyhedra associated with the
CND in [7] and CND with survivability constraints in [8].

Besides, the earlier results on the CND problem and the associated
polyhedron can be found in [5], where the authors study a multiple
commodities-two facilities network design problem restricted to a
single arc. They propose several classes of facet defining valid
inequalities that completely describe the convex hull of the arc-set
CND solutions. In [9], Magnanti et al. propose a more detailed dis-
cussion on the CND problem. They propose two approaches to solve
the problem: a Lagrangian approach and a cutting planes approach.
In particular, they show that the results given in [5] strengthen the
CND formulation. Some of the results given in [5] are generalized by
Bienstock and Günlük in [10]. They are also extended for the capacity
expansion problem, where the overall capacity of the network can be
increased by installing several units of capacitated facilities or “bat-
ches” on the links. The authors develop a cutting plane approach
based on several facet defining inequalities, to solve the problem.
Further polyhedral results are presented in [11–16] for different
versions of the CND problem under splittable traffic assumption. In
particular in [15,12], the authors study two formulations based on
the so-called metric inequalities for the minimum cost CND problem.
In [12], Bienstock et al. describe two classes of valid inequalities that
define facets and are used to obtain a complete characterization of
the considered polyhedron for complete three nodes graphs. More-
over, Mattia et al. [15] introduce the so-called tight metric inequal-
ities and show that all the facets of the polyhedron associated with
the solutions of the CND are tight metric inequalities. Note that
handling the problem by this approach is similar to the Benders
decomposition approach (see [17] for more details on this approach).

More recently, some authors have turned their attention to the
multi-layer version of the CND problem (see for instance [18–20]
and the references therein). Most of the approaches proposed to
solve the multi-layer network design problems are based on the
results introduced for their single-layer versions.

Our contribution. The objective of this paper is to solve efficiently
the UNACND problem by using a Branch-and-Cut algorithm that
embeds new classes of valid inequalities. These are obtained by
investigating the polyhedra associated with the single arc UNACND
problem. Actually, we realized that different possible variants of the
single arc CND are in fact associated with the same polyhedron. We
refer to these variants as functions. We then introduce the poly-
hedra associated with a general class of functions called unitary step
monotonically increasing functions, and study their basic properties.
We provide two classes of inequalities called Min Set I and Min Set II
that are valid for all considered functions. We give necessary and
sufficient conditions for these inequalities to define facets. Our
polyhedral results as well as the separation routines remain avail-
able for every considered function, by integrating the specificities of
each function. We give an application to the Bin Packing function,
that is in fact equivalent to the arc-set UNACND. In particular, our
results for Min Set I inequalities generalize those provided in [1–3]
for c-strong inequalities. Both classes of inequalities Min Set I and
Min Set II are used within a Branch-and-Cut algorithm to efficiently

solve UNACND problem and to strengthen the linear relaxation of
the multi-layer version of this problem.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the UNACND problem and its restriction to a single
arc. In Section 3, we introduce the set functions polyhedra and
study their basic properties. We then present the Min Set I and Min
Set II inequalities, and investigate their facial structure. In Section 4,
we give an application of our polyhedral results to the Bin Packing
function, and show the interest of such application for the UNACND
problem. Both Min Set I and Min Set II inequalities are embedded
within a Branch-and-Cut algorithm described in Section 5. In this
section, we also present the separation procedures used to generate
the identified valid inequalities. We then show a set of experiments
conducted on random and realistic SNDlib based instances in
Section 6. Finally, some concluding remarks are given in Section 7.

2. The unsplittable non-additive capacitated network design
problem

The UNACND problem can be presented as follows. Consider a
bi-directed graph G¼(V,A) that represents an optical network. Each
node v V∈ corresponds to an optical device (multiplexer) and
every arc a i j A,= ( ) ∈ corresponds to an optical fibre. If an arc i j,( )
exists in A, then j i,( ) also belongs to A. Let K be a set of commod-
ities. Each commodity k K∈ has an origin node o Vk ∈ , a destina-
tion node d Vk ∈ and a traffic D 0k > that has to be routed between
ok and dk. We suppose that a set of equivalent modules, each of
capacity C, is available. This set will be denoted by W. Assume that
D Ck ≤ , for all k K∈ . A module w W∈ installed on an arc i j,( ) is a
copy of that arc, and yields a cost cij. Every module w can carry one
or many commodities, but a commodity cannot be split on several
paths or even on several modules of the same arc. This specificity
makes impossible to aggregate the commodities having the same
source and destination nodes, to reduce the size of the problem.
Thus, there might be several different commodities with the same
origin and destination nodes. The UNACND problem is to determine
a minimum cost set of modules that have to be installed on the arcs
of G so that a routing path is associated with each commodity from
its origin to its destination.

Now consider a set K n1, ,= { … } of items (demands) with
weights D1, D2, …, Dn and bins with the same capacity C. The bin
packing problem (BPP) consists in assigning each item to one bin so
that the total weight of the items in each bin does not exceed C
and the number of bins used is minimum [21]. We assume,
without loss of generality, that the weights Dk and the capacity C
are positive integers and D Ck ≤ , for all k K∈ . The bin packing
problem is NP-hard in general [22] and various approaches have
been proposed during the last three decades to solve it. In what
follows, we use the relationship between UNACND problem and
bin packing problem to show that the former is NP-hard.

Proposition 1. The UNACND problem is NP-hard even if A has a
single arc.

Proof. We will show that the UNACND problem is NP-hard even
when the underlying graph consists of only one arc. The reduction
is from the bin packing problem. Consider an instance of the bin
packing problem, given by a set of items denoted K, each one
having a weight D 0k > , k K∈ . Let W denote a set of available bins,
where every bin has a capacity C. We look for the smallest number
of bins needed to pack the items of K. Let us construct the graph
G V A,= ( ), where V u v,= { } and A u v,= {( )}. In other words, G
consists of two nodes interconnected by a single arc. For each
k K∈ , we must send Dk units of flow from node u to node v. The
set W defines the set of available modules with capacity C, the
installation costs are unitary. Let B denote the optimal solution of
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