
Computational results of a semidefinite branch-and-bound algorithm
for k-cluster

Nathan Krislock a,b, Jérôme Malick c,a,n, Frédéric Roupin d

a INRIA Grenoble Rhône-Alpes, Grenoble, France
b Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL, USA
c CNRS, Lab. J. Kunztmann, Grenoble, France
d LIPN-CNRS UMR7030-Université Paris-Nord, France

a r t i c l e i n f o

Available online 29 July 2015

Keywords:
Combinatorial optimization
Semidefinite programming
Triangle inequalities
k-cluster problem
k-densest subgraph problem

a b s t r a c t

This computational paper presents a method to solve k-cluster problems exactly by intersecting
semidefinite and polyhedral relaxations. Our algorithm uses a generic branch-and-bound method
featuring an improved semidefinite bounding procedure. Extensive numerical experiments show that
this algorithm outperforms the best known methods both in time and ability to solve large instances. For
the first time, numerical results are reported for k-cluster problems on unstructured graphs with 160
vertices.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The k-cluster problem

Given a graph G¼ ðV ; EÞ, the k-cluster problem consists of deter-
mining a subset SDV of k vertices such that the sum of the weights of
the edges between vertices in S is maximized. This is a classical
problem of combinatorial optimization, also known under the names
“heaviest k-subgraph problem”, “k-dispersion problem”, and “k-den-
sest subgraph problem” (when all the weights are equal to one). The
problem can be seen as a generalization of the max-clique problem,
and also as a particular case of quadratic knapsack problem where all
the costs are equal.

Letting n¼ jV j denote the number of vertices, and wij denote
the edge weight for ijAE and wij ¼ 0 for ij=2E, the problem can be
modeled as the 0–1 quadratic optimization problem

maximize 1
2z

TWz

ðKCÞ subject to
Pn

i ¼ 1 zi ¼ k

zAf0;1gn;
ð1Þ

where W≔ðwijÞij is the weighted adjacency matrix of the graph G.
The k-cluster problem Eq. (1) is a fundamental graph optimiza-

tion problem, and arises in many applications such as telecommu-
nication, warehouse location, military defence, social networks,
and molecular interaction networks; see more details and refer-
ences in the introductions of, e.g., [18,16,2].

It is well-known that the k-cluster problem is a hard combi-
natorial optimization problem: it is NP-hard (even for special
graphs, see, e.g., [12]), it does not admit a polynomial time
approximation scheme [8,14], and there is even a huge gap
between the best known approximation algorithm and the known
inapproximability results (see, e.g., [1,2]).

In practice, k-cluster problems are also difficult to solve to
optimality. Even if there are many theoretical articles on k-cluster,
there are only a few of them on exact resolution. Among the only
works attacking this problem are the pioneering [11], the LP-based
branch-and-bound method of [18, Section 2.4], and the convex
quadratic relaxation method of [3] using semidefinite program-
ming and CPLEX. Note that, before 2006 and [18], no non-trivial k-
cluster problem of size n¼ 100 was able to be solved. As of 2014,
the state-of-the-art method for solving problem Eq. (1) to optim-
ality is the semidefinite-based branch-and-bound algorithm of
[16] which is able to solve instances of size n¼ 120. The second
best method is the quadratic-programming-based [3] that shows
equivalent performances for problems of size n⩽100 (see the
extensive comparison of [16]). Notice also, as reported by [3], that
linear-programming-based methods are not competitive when
solving large instances of k-cluster. This is due to the fact that
linear relaxations for k-cluster have a poor ratio of tightness to
computing time, as illustrated in [20, Section 4.3].

1.2. Contribution and outline of this article

Our recent work [15] presents an improved semidefinite bounding
procedure for Max-Cut, another classical combinatorial optimization
problem. Max-Cut problems can be written as maximizing a quadratic

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.07.008
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: nkrislock@niu.edu (N. Krislock),

jerome.malick@inria.fr (J. Malick), frederic.roupin@lipn.univ-paris13.fr (F. Roupin).

Computers & Operations Research 66 (2016) 153–159

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.07.008
http://dx.doi.org/10.1016/j.cor.2015.07.008
http://dx.doi.org/10.1016/j.cor.2015.07.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.07.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.07.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.07.008&domain=pdf
mailto:nkrislock@niu.edu
mailto:frederic.roupin@lipn.univ-paris13.fr
http://dx.doi.org/10.1016/j.cor.2015.07.008
http://dx.doi.org/10.1016/j.cor.2015.07.008


function over the vertices of a hypercube, that is, as (1) but without
the equality constraint

Pn
i ¼ 1 zi ¼ k.

In this current paper, we build upon both [16] and [15] by adapting
and extending for the k-cluster problem the bounding procedure of
[15]. As we will see, extending techniques to k-cluster that have
proven effective for Max-Cut brings complications due to the presence
of the additional linear constraint. However, the extensive numerical
experiments of this paper show that the resulting algorithm greatly
outperforms the methods of [3,16], which are the previous best
existing methods for solving the k-cluster problem to optimality.
Our algorithm is also able to solve unstructured k-cluster problems of
sizes n¼ 140 and n¼ 160, for which no numerical results have been
reported in the literature. The main contribution of this paper is thus
to advance our ability to solve k-cluster problems to n¼ 160 from the
previous limit of n⩽120.

The outline of this paper is as follows. In Section 2 we describe
our improved semidefinite bounding procedure for the k-cluster
problem (1). In Section 3 we describe our branch-and-bound
implementation using our improved semidefinite bounding pro-
cedure for solving k-cluster problems to optimality. In Section 4
we present our numerical results. Finally, we give concluding
remarks in Section 5.

2. Improved semidefinite bounding procedure for k-cluster

In this section we describe the improved bounding procedure that
is based on semidefinite programming (SDP) bounds of k-cluster. We
start by briefly recalling the standard strengthened SDP relaxation of
k-cluster that we will approximate with our bounds. We use the
following standard notation: the inner product of two matrices X and
Y is 〈X;Y〉≔traceðXTYÞ, and X≽0 means that X is symmetric positive
semidefinite.

2.1. Strengthened semidefinite relaxation

Semidefinite relaxations of the k-cluster problem (1) have already
been considered in many papers for different purposes, such as [20]
for a computational study of the bounds, [2] for (in)approximation
results, and [18,16] in the context of exact resolution.

The algorithm presented in this paper uses a strengthened
semidefinite relaxation in f�1;1g variables as in [16]. The derivation
of this SDP relaxation uses standard techniques (see, e.g., [19,22]),
namely reinforcement by redundant constraints, homogenization,
change of variables, and lifting to the space of matrices – see the
reformulations 1-3 in [16, Section 1] leading to the SDP relaxation [16,
Equation (9)]. For the sake of brevity, we do not repeat here the
derivation of the relaxation, and we describe only the final SDP
problem, referring to [16, Section 2] for more modeling information.

We consider the bound for the k-cluster problem (1) given by
the following SDP problem:

maximize 〈Q ;X〉

ðSDPIÞ subject to 〈Qj;X〉¼ 4k�2n; jAf0;…;ng;
diagðXÞ ¼ e; X≽0;

AIðXÞ⩾�e;

ð2Þ

where X lies in Snþ1, e is the vector of all ones, and

Q≔
1
4

eTWe eTW

We W

" #
; Qj≔

0 eT þðn�2kÞeTj
eþðn�2kÞej ejeT þeeTj

2
4

3
5;

for jAf0;…;ng, with ejARn being the j-th column of the n� n
identity matrix, for jAf1;…;ng, and e0≔0ARn. To lighten notation,
we will gather all the equality constraints (including the diagonal
ones) together as BðXÞ ¼ b, where bAR2nþ2 and B : Snþ1-R2nþ2 is
a linear operator.

Let us explain briefly the role of the constraints; again, for more
details about this formulation, we refer to [16, Section 1]. The j¼ 0
constraint in problem (2) comes from the constraint

Pn
i ¼ 1 zi ¼ k in

the original k-cluster problem (1). In addition, we further stre-
ngthen the SDP bound by adding reinforcing equality constraints
and valid triangle inequality constraints:

(i) Reinforcing equality constraints: The reinforcing equality con-
straints,

〈Qj;X〉¼ 4k�2n; jAf1;…;ng; ð3Þ
come from adding the redundant product constraintsPn

i ¼ 1 zizj ¼ kzj, for jAf1;…;ng, to the original problem before
forming the SDP (Lagrangian) relaxation. It is known that the
reinforcing equality constraints (3) provide the best possible
SDP bound when considering the inclusion of valid equality
constraints (see, e.g., [13]). More precisely, when adding any
set of redundant quadratic constraints fzTCjzþbTj zþ aj ¼ 0 :
jA Jg before forming the SDP (Lagrangian) relaxation, the
resulting bound is greater or equal to the partial Lagrangian
relaxation of k-cluster,

ðDPÞ min
μ

max
z s:t: eT z ¼ k

1
2
zTWzþ

X
μiðz2i �ziÞ

� �
;

where only the binary constraints zAf0;1gn (written equiva-
lently as z2i �zi ¼ 0, for i¼ 1;…;n) are relaxed, but the equality
constraint

Pn
i ¼ 1 zi ¼ k (written equivalently as eTz¼ k) is not

relaxed. It is shown in [13] that the set of product constraints
achieves the partial Lagrangian relaxation bound, and is there-
fore optimal when considering the inclusion of valid equality
constraints.

(ii) Triangle inequalities: The triangle inequalities are defined by

XijþXikþXjk⩾�1;Xij�Xik�Xjk⩾�1;
�XijþXik�Xjk⩾�1; �Xij�XikþXjk⩾�1;

for 1⩽io jok⩽nþ1, and correspond to the fact that for any
xAf�1;1gnþ1, it is not possible to have exactly one of three
products fxixj; xixk; xjxkg equal to �1, nor is it possible to have
all three of the products equal to �1. There are a large
number, 4ðnþ1

3 Þ, of triangle inequalities in total. Therefore, we
will iteratively add a subset of the most violated inequalities.
For a subset of triangle inequalities I, we let AI : S

n-Rj I j be
the corresponding linear function describing the inequalities
in this subset. For every set of triangle inequalities I, the SDP
relaxation in problem (2) gives us an upper bound on the value
of the maximum weight k-cluster

ðKCÞ⩽ðSDPIÞ: ð4Þ

As was shown in [20], the ðSDPIÞ bound with all triangle inequal-
ities (i.e., j Ij ¼ 4ðnþ1

3 Þ) is tight in that it achieves the optimal value of
the k-cluster problem on some instances, but it is also expensive to
compute. Instead of using the ðSDPIÞ bound directly, our approach
here is based upon the semidefinite bounds of [17] that we present in
the next section.

Before moving on to present our semidefinite bounds, we point
out an easy but important result on the SDP relaxation (2): unlike
the SDP relaxation of Max-Cut used in [15], problem (2) is not
strictly feasible.

Lemma 1. The semidefinite relaxation (2) of the k-cluster problem is
not strictly feasible (i.e. a feasible matrix cannot be positive definite).

Proof. Let X be feasible for problem (2). Let v≔
4k�2n
�2e

� �
ARnþ1.

N. Krislock et al. / Computers & Operations Research 66 (2016) 153–159154



Download English Version:

https://daneshyari.com/en/article/474980

Download Persian Version:

https://daneshyari.com/article/474980

Daneshyari.com

https://daneshyari.com/en/article/474980
https://daneshyari.com/article/474980
https://daneshyari.com

