
Two simple and effective heuristics for minimizing the makespan
in non-permutation flow shops

Alexander J. Benavides, Marcus Ritt n

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil

a r t i c l e i n f o

Available online 13 August 2015

Keywords:
Scheduling
Metaheuristics
Flow shop
Non-permutation schedules

a b s t r a c t

We propose a constructive and an iterated local search heuristic for minimizing the makespan in the
non-permutation flow shop scheduling problem. Both heuristics are based on the observation that
optimal non-permutation schedules often exhibit a permutation structure with a few local job
inversions. In computational experiments we compare our heuristics to the best heuristics for finding
non-permutation and permutation flow shop schedules, and evaluate the reduction in makespan and
buffer size that can be achieved by non-permutation schedules.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the flow shop scheduling problem (FSSP) we have to find a
schedule for jobs J1;…; Jn on machines M1;…;Mm. Each job Jj must
be processed on all machines in the given order. On each machine
Mi it must be processed without interruption for a time pij, and can
be processed on at most one machine at a given instant. Likewise,
each machine can process at most one job at a given instant. The
makespan of a given schedule is the completion time of the last job
on the last machine, and its minimization is the most common
objective function in the FSSP, and also our concern here. This
problem is also denoted by F∣∣Cmax and is NP-hard for
minfn;mgZ3.

Formally, let xij be the starting time of job Jj on machine Mi and
let variable yijj0 Af0;1g indicate that job Jj precedes job Jj0 on
machine Mi, then an integer linear program for the FSSP is

min Cmax; ð1Þ

s:t: xmjþpmjrCmax; 8 jA ½n�; ð2Þ

xijþpijrxiþ1;j; 8 iA ½m�1�; jA ½n�; ð3Þ

xijþpijrxij0 þMð1�yijj0 Þ; 8 iA ½m�; ja j0A ½n�; ð4Þ

yijj0 þyij0 j ¼ 1; 8 iA ½m�; ja j0A ½n�; ð5Þ

xijZ0; 8 iA ½m�; jA ½n�; ð6Þ

yijj0 Af0;1g; 8 iA ½m�; ja j0A ½n�: ð7Þ

In this formulation constraints (2) define the makespan, con-
straints (3) require a job to terminate on a machine before starting
on the following one, constraints (4) guarantees that the jobs are
processed in the order defined by the variables y, and constraint
(5) forces a linear ordering of the jobs on all machines. The
constant M has to be sufficiently large, e.g. M ¼P

iA ½m�
P

jA ½n�pij.
Johnson [12] has shown that there always exists an optimal

schedule such that the processing order of the jobs on the first two
and the last two machines is the same. Thus, the flow shop
scheduling problem (FSSP) has up to ðn!Þmaxfm�2;1g different candi-
date schedules. This may have contributed to the fact that most of
the literature focuses on the permutation flow shop scheduling
(PFSSP), which permits only the n! schedules which have an
identical job order on all machines. Another reason for preferring
the PFSSP may be that studies show that the gain of non-
permutation schedules is limited, so that the increased problem
complexity and the corresponding increased solution time seems
not to justify the improvement in the makespan [20,28,40].

However, a large fraction of the search space of the FSSP usually
is uninteresting. It is, for example, very unlikely that the schedules
on two subsequent machines are reversed. We can observe in
practice that good or optimal solutions of the FSSP exhibit only a
few “strategical” inversions of jobs. For example, Fig. 1 shows
Gantt charts of the optimal permutation and non-permutation
schedules of an instance of the FSSP. Observe that the non-
permutation schedule has almost a permutation structure with a
few inversions, namely the 4th and the 5th job on the last two
machines and the 13th and the 14th job on the last two machines.
Thus it seems to be reasonable to limit heuristic searches to such
cases. The main contribution of this paper is to propose a
constructive and a search heuristic based on this observation.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.08.001
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ55 5133086818; fax: þ55 5133087308.
E-mail addresses: ajbenavides@inf.ufrgs.br (A.J. Benavides),

marcus.ritt@inf.ufrgs.br (M. Ritt).

Computers & Operations Research 66 (2016) 160–169

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.08.001
http://dx.doi.org/10.1016/j.cor.2015.08.001
http://dx.doi.org/10.1016/j.cor.2015.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.08.001&domain=pdf
mailto:ajbenavides@inf.ufrgs.br
mailto:marcus.ritt@inf.ufrgs.br
http://dx.doi.org/10.1016/j.cor.2015.08.001
http://dx.doi.org/10.1016/j.cor.2015.08.001


Current state-of-the-art heuristics for the PFSSP produce nearly
optimal solutions. For the instances proposed by Taillard [38], for
example, such solutions deviate by about 0.5% from the best
known values [7,33,35,45]. The best known values, in turn, are
mostly optimal, and deviate in average by 0.2% from the best
known lower bounds [39]. This limits the possible improvement of
new heuristics for the PFSSP.

The worst case gap between permutation and non-permutation
schedules is Θð ffiffiffiffiffi

m
p Þ [22,27]. For practical instances, studies of

Tandon et al. [40] and Liao et al. [20] show that the makespan of
non-permutation schedules is about 1–3% shorter compared to
permutation schedules. Given the above limits for improving per-
mutation schedules, a gain of 1–3%, within reasonable time, can be
interesting. Observe also that permutation schedules already can
require a buffer space of up to n�1 items between the machines,
such that a practical implementation of non-permutation schedules
does not increase the worst-case buffer space.

We explore the non-permutation FSSP in the remainder of this paper.
In the next subsection we discuss related work. In Sections 2 and 3 we
propose a constructive and a search heuristic based on the idea of limited
“strategical” job inversions. Results of three experiments with these
heuristics are reported in Section 4, and we conclude in Section 5.

1.1. Related work

Most of the literature focuses on the permutation flow shop.
Since some of its solutions techniques can be successfully applied
to produce non-permutation schedules as well, we first give a very
brief overview over methods for solving the PFSSP, and then
present heuristics for the general case.

The best constructive heuristics for the PFSSP are based on
repeated insertion of jobs into a partial schedule at the position
which maintains the makespan shortest. In their seminal paper
Nawaz et al. [23] propose the constructive heuristic NEH which
inserts the jobs in order of non-increasing total processing time.
Since then, NEH-like algorithms have been studied intensively
[6,7,13–16] and are currently the best constructive heuristics.

Various meta-heuristics have been applied to the PFSSP, includ-
ing simulated annealing [25], genetic algorithms [30,33], ant
colony optimization [29], particle swarm optimization [41], vari-
able neighborhood search [45], and tabu search [10,24]. Among
the best performing heuristics, iterated greedy algorithms stand
out for their simplicity and performance [7,26,35]. The currently
best performing method is the iterated greedy algorithm proposed
by Fernandez-Viagas and Framinan [7].

Several authors have proposed constructive heuristics for the
non-permutation case. Krone and Steiglitz [18] propose a two-
phase heuristic. In the first phase they improve a random permuta-
tion schedule by a first improvement local search in a shift
neighborhood that reinserts a job in an earlier position. The second
phase optimizes the schedule by allowing job-passing. For a fixed
“machine tail” k, a swap of adjacent jobs on machines k; kþ1;…;m
which reduces the makespan is accepted. If no such swap exists, k is
increased, and the process repeats, until k exceeds m.

Gonzalez and Sahni [9] obtain a ⌈m=2⌉-approximation in time
Oðmn log nÞ by solving two-machine flow shop problems on
subsequent machine pairs optimally and joining the obtained
schedules. Their algorithm has been improved by Chen et al. [3]
to an m=2þ1=6-approximation.

Leisten [19] is concerned with limited buffer space and no-wait
flow shops. He proposes two heuristics BFPS and BFPSE for
generating permutation schedules for the two-machine problem
that optimize the buffer usage, from the start, and the start and
end, respectively. To optimize the buffer usage, the next job is
chosen such that it is the difference between its completion on the
first machine and the completion of its bþ1th predecessor on the
second machine, for buffer size b, is minimized. If the buffer is
infinite, this is equivalent of scheduling by earliest completion
time for BFPS or the smaller of earliest completion time and latest
starting time for BFPSE. He extends these heuristics to BFS and
BFSE, which generate non-permutation schedules trying to opti-
mize buffer usage.

Tandon et al. [40] propose a generalized RAES heuristic: it uses
the RAES heuristic of Dannenbring [4] to produce a permutation
schedule, and then applies a local search swapping adjacent jobs of
an initial solution where all machines have the same permutation.

Koulamas [17] presents a constructive heuristic for the FSSP. In
computational experiments he finds it to be competitive to NEH,
and shows that it can outperform NEH when non-permutation
schedules are optimal (later studies, however, do not confirm this
on a larger set of instances, see Ruiz and Maroto [34]). To generate
a permutation schedule, he solves all m

2

� �
two-machine problems

using the method of Johnson [12]. For each schedule, whenever a
job Ji precedes a job Jj (not necessarily immediately), then priority
of Ji is decreased by one, and whenever it succeeds a job Jj, its
priority is increased by one. Equivalently, for each schedule, a job
at rank r contributes 2r�ðnþ1Þ to its overall priority.

Pugazhendhi et al. [28] propose a heuristic to improve a
permutation schedule, with their main interest in schedules with
missing operations. The heuristic processes the jobs in a given
permutation order, and inserts each job on each machine into an
idle interval without increasing the completion time of any other
job, if possible, and otherwise appends it at the end. The heuristic
runs in time Oðn2mÞ.

The best results for the FSSP have been obtained by the
application of meta-heuristics. Yin [43] proposes an iterated greedy
algorithm (IGA). It represents a non-permutation schedule by a
permutation π1 for the first two machines, a permutation π2 for
machines 3;…;m�2, and a permutation π3 for the last two
machines. The heuristic has three phases: the first improves π1,
letting π2 ¼ π3 ¼ π1, the second fixes π1 and improves π2, letting
π3 ¼ π2, and the last fixes π1 and π2 and improves π3. Each improve-
ment phase applies an IGA to the permutation, removing d¼6
random jobs and reinserting them at the best position. Lin and Ying
[21] use the same representation in a hybridization of tabu search
and simulated annealing. The tabu search generates a random
neighbor by swapping two jobs in some permutation and accepts
the best non-tabu neighbor according to a Metropolis criterion, with
a temperature that follows a geometric cooling schedule. When a
neighbor has been accepted, a short-term memory prevents the
swapped jobs to return to their previous rank during the tabu
tenure. This idea can easily be generalized to more than three
schedules, and Liao et al. [20] apply the genetic algorithm of Reeves
[30] and a tabu search to a representation of all m schedules in the
same manner to produce non-permutation schedules.

Ying and Lin [44], Sadjadi et al. [36], Yagmahan and Yenisey
[42], and Rossi and Lanzetta [31,32] investigate ant colony opti-
mization (ACO) for the FSSP. All these approaches work on the
disjunctive graph model. An ant produces a schedule by traversing
the graph from the artificial source to the artificial sink node,

Fig. 1. Gantt chart of an optimal permutation schedule (above, makespan 1359)
and an optimal non-permutation schedule (below, makespan 1358) for
instance ta002.

A.J. Benavides, M. Ritt / Computers & Operations Research 66 (2016) 160–169 161



Download English Version:

https://daneshyari.com/en/article/474981

Download Persian Version:

https://daneshyari.com/article/474981

Daneshyari.com

https://daneshyari.com/en/article/474981
https://daneshyari.com/article/474981
https://daneshyari.com

