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a b s t r a c t

This paper presents a portfolio-based approach to the harvesting of renewable energy (RE) resources.
Our examined problem setting considers the possibility of distributing the total available capacity across
an array of heterogeneous RE generation technologies (wind and solar power production units) being
dispersed over a large geographical area. We formulate the capacity allocation process as a bi-objective
optimization problem, in which the decision maker seeks to increase the mean productivity of the entire
array while having control on the variability of the aggregate energy supply. Using large-scale
optimization techniques, we are able to calculate – to an arbitrary degree of accuracy – the complete
set of Pareto-optimal configurations of power plants, which attain the maximum possible energy
delivery for a given level of power supply risk. Experimental results from a reference geographical region
show that wind and solar resources are largely complementary. We demonstrate how this feature could
help energy policy makers to improve the overall reliability of future RE generation in a properly
designed risk management framework.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the large-scale commercialization of wind power
generation, energy scientists and practitioners have been striving
to tackle operational and financial risks entailed by wind genera-
tion. The main source of these risks is undoubtedly the lack of
predictability about the timing and the volume of the delivered
energy output. A certain amount of uncertainty in wind power
generation is legitimate, if we think that the output of a wind farm
largely depends on the time evolution of weather and climate
patterns, which are also partly unpredictable. Contrary to the
widespread belief, though, fluctuations in wind power production
are persistent and do not significantly scale down with the
forecasting horizon. Molloy [19] reports an up to 10% variability
in the gross annual production of a reference wind farm, with
occasional 20% drops in energy generation from one year to
another. Equally large inter-annual changes have been recorded
in the aggregate wind power delivery of Spain [13], which can be
largely attributed to the dynamics of mesoscale circulation pat-
terns prevailing over the Iberian Peninsula [25]. No matter what
the actual source of variability is, production drawdowns of this

size deserve special attention as they may have devastating
consequences for the financial viability of present and future wind
energy investments.

One of the typical solutions recommended in the literature
against the adverse effects of wind stochasticity is spatial diversi-
fication. In simple terms, this means distributing the available
capacity over a large geographical area and thus taking advantage
of possible dissimilarities in generation profiles. In essence, the
decision-maker seeks to develop a network of interconnected
energy generation units (power portfolio) which could aggregately
maintain a sufficient level of power production, even at times
when individual components fail to deliver. Spatial displacement
as a risk diversification strategy has become a popular topic in the
literature; see e.g. the works of Holttinen [12], Archer and
Jacobson [2], Cassola et al. [4], Ostergaard [23], Kempton et al.
[15], Roques et al. [28], Grothe and Schnieders [9], Santos-
Alamillos et al. [30]. Still, the empirical evidence with respect to
the true potential of this strategy is mixed.

Cassola et al. [4] report supportive results of the effectiveness of
spatial diversification in wind power generation. They demonstrate
that a careful redistribution of wind capacity across the isle of Corsica
(France) can help reduce the otherwise great variability of local wind
resources. In a recent work, Reichenberg et al. [27] present a
methodology for assessing the optimal location of wind farms in
the Nordic countries to reduce power fluctuations. Their results show
a significant dampening of variation in wind energy delivery
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(at the order of 33%) following the adoption of this plan. Similar
findings are reported by Archer and Jacobson [2] for the Midwestern
United States and by Kempton et al. [15] for offshore areas along the
east coast of the country.

Another stream of literature is more pessimistic about the true
potential of wind energy for serving base load. Apart from thorny
implementation issues often brought up by studies of this group1,
the main reason for the reported poor performance seems to be
the fact that most countries, especially those in the central part of
Europe, show little spatial variability in wind resources. This is the
result of relatively homogeneous weather conditions and low
topographic complexity prevailing in these areas. As a conse-
quence, it becomes difficult to find sites with low correlation in
generation profiles, which is the key to risk diversification. In one
of the early works focusing on the benefits from spatially dis-
tributing wind power generation, Ref. [8], ch. 6, estimated that the
pairwise correlation of the winds blowing over two randomly
chosen sites in Europe diminishes exponentially with distance,
with an average decay parameter of 723 km. This means that one
would have to look in an approximate range of over 700 km in
order to be able to spot two locations with a correlation coefficient
as small as 1/3. This finding is indicative of the persistence of
weather patterns in Europe and the practical difficulties associated
with spatial diversification.

One of the opportunities presented for power balancing on a
smaller scales (national or regional) is the chance of supplement-
ing wind generation with in-feeds from other RE resources (such
as solar ones). This way one creates a composite risk diversification
strategy which takes into account not only the smoothing effect of
geographical aggregation but also the fact that wind and solar
energy typically have complementary profiles2. Despite the rela-
tively few research papers on the complementarity of wind and
solar resources [10,11,20,29,34], little has yet been said as to how
this meteorological pattern can been utilized in the decision-
making process—in particular, when it comes to reducing the risk
of renewable energy supply.

This paper attempts to fill in this literature gap, by presenting a
portfolio-based strategy for the optimal exploitation of wind and
solar resources. Power portfolios are optimized not only with
respect to the delivered output (as measured by the mean
generating capacity3) but also with respect to the generation risk
(temporal variability in energy production). Mean-variance port-
folio-selection has also been recently proposed by Roques et al.
[28] for coordinating the deployment of wind energy investments
in the European zone. Their examined optimization problem
utilizes historical data for the aggregate wind power production
of five European countries to deliver an optimal cross-border
allocation of wind capacity. Despite the common methodological
origin, our work deviates from and extends the previous one in at
least two aspects. First, the risk management strategy we examine

in this paper goes in two directions: (a) displacing generation units
over a large geographical region (horizontal diversification) and
(b) allocating capacity among technologically heterogeneous
power plants (vertical diversification). Furthermore, the size of
our asset universe is significantly larger. The presented energy
planning setting involves some thousands of candidate sites for RE
harvesting. An optimization problem of this cardinality poses
numerical challenges to known portfolio selection techniques,
such as the Critical Line Method (CLM), which has been originally
proposed by Markowitz [18] for the solution of mean-variance
optimization problems. The Niedermayer and Niedermayer [22]’s
implementation of the CLM method, adopted in this paper, allows
us to efficiently deal with the computational complexities of such
an optimization framework.

The rest of the paper is structured as follows: Section 2 discusses
the mean-variance approach to portfolio selection, properly adapted
to the case of power production mixes. In Section 3 we present our
reference geographical region and provide details on the methodol-
ogy employed to generate power production scenarios. We also
discuss numerical complexities arising from the application of the
mean-variance analysis to the particular dataset. Section 4 details the
critical line method, which along with the Niedermayer and Nieder-
mayer [22]’s implementation, forms the backbone of our portfolio-
selection methodology. Section 5 presents experimental results and
Section 6 concludes the paper.

2. Mean-variance portfolio optimization

The Markowitz’s mean-variance analysis is the foundation of
modern portfolio theory (see e.g. [18,7,16]). This general frame-
work will be subsequently used to derive optimal harvesting plans
for RE resources. We assume that the decision maker (energy
investor or portfolio manager) owns a certain amount of nominal
power and seeks to allocate it optimally between different regions/
RE generation technologies so that the following two criteria are
met: (1) minimization of the overall energy supply risk (expressed
by the standard deviation of the generating capacity) and (2) max-
imization of the aggregate expected return (as measured by the
average output delivered). The analytical formulation of the
optimization problem is given below:

Type-1 formulation

min
w ¼ w1 ;w2 ;…;wNð Þ

Vp wð Þ ¼def
XN

i;j ¼ 1

wiwjσij ð1:1Þ

such that μp wð Þ ¼def
XN

i ¼ 1

wiμi ¼ μΤ ð1:2Þ

XN

i ¼ 1

wi ¼ 1 ð1:3Þ

wL
i rwirwU

i i¼ 1;…;N ð1:4Þ

wiARþ i¼ 1;…;N ð1:5Þ
where N is the number of assets (joint wind and solar resources),
wi is the proportion of available capacity allocated at asset i
(decision variable), μi is the sample mean of generating capacity
for asset i; μΤ is the mean return target for the overall portfolio, σij
is the sample covariance between the generating capacity for i and
j. Constraint (1.3) ensures that all available capacity is distributed
among the N candidate resources (budget constraint), while
wL

i (w
U
i ) place a floor (ceiling) on the proportion of nominal power

that can allocated at each asset.

1 For example, Ref. [28] considers the lack of the network infrastructure for
facilitating the transmission of energy between distant power generation units as a
main obstacle for the disaggregation of wind power generation.

2 At mesoscale (regional) level, the variability of the wind and solar resources is
closely related. As low pressure centers move over Europe, they bring cloudy
conditions while enhancing wind speed. This causes a degradation in solar
resources with a simultaneous improvement in winds [29]. The time scales
associated with this coupling between solar and wind resources variability are in
the range of hours to days while the spatial scales may reach thousands of square
kilometers. The temporal aggregation of this variability gives rise to coupled inter-
annual variability between the solar and wind resources [25]. Therefore, consider-
able additional smoothing of power fluctuations may be obtained by combining in
an optimal way both wind and solar power technologies.

3 We make a distinction between the capacity of a power plant, which is the
ideal (nameplate) power output, and the generating capacity, which is the actual
energy that is delivered over a specified time frame (see also Section 3.1 and
footnote 5).
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