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a b s t r a c t

We address the stochastic lot sizing problem with piecewise linear concave ordering costs. The problem
is very common in practice since it relates to a variety of settings involving quantity discounts,
economies of scales, and use of multiple suppliers. We herein focus on implementing the (R; S) policy for
the problem under consideration. This policy is appealing from a practical point of view because it
completely eliminates the setup-oriented nervousness – a pervasive issue in inventory control. In this
paper, we first introduce a generalized version of the (R; S) policy that accounts for piecewise linear
concave ordering costs and develop a mixed integer programming formulation thereof. Then, we
conduct an extensive numerical study and compare the generalized (R; S) policy against the cost-optimal
generalized (s,S) policy. The results of the numerical study reveal that the (R; S) policy performs very well
– yielding an average optimality gap around 1%.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The need for coordination and cooperation between supply
chain players has dramatically increased due to rapid progress in
globalization and competition. In this context, a common com-
plaint raised by supply chain managers is that downstream players
continually revise the timing and the size of their order requests
[7]. It is commonly agreed that the revisions in replenishment
schedules are particularly critical [4]. This issue is often referred to
as the setup-oriented nervousness and it is prevalent in a variety
of industrial settings involving managing joint replenishments
[13], shipment consolidation in logistics [8], and buying raw
materials in markets where price is fluctuating [6]. A practical
approach towards offsetting setup-oriented nervousness is to
employ an (R; S) policy [1]. Here, a replenishment schedule is
fixed once and for all at the beginning of the planning horizon, but
the size of replenishments are dynamically determined at the time
of placing orders upon observing realized demands. This strategy
has recently been subject to a detailed scrutiny due to its practical

relevance, and applied to a variety of inventory control problems
[1,14,15,11] (see e.g.). All of these studies have analyzed the (R; S)
policy under the assumption that ordering cost is comprised of a
fixed and a linear component. In this study, we aim to extend this
literature by presenting a mathematical programming model of
the (R; S) policy for piecewise linear concave ordering costs. This
cost structure is a class of decreasing average costs that captures
the combination of linear and fixed ordering costs as a special case.
It reflects many practical examples such as quantity discounts,
effect of scale economies, and use of multiple suppliers (see e.g
[9,2,17]).

The majority of research efforts on inventory problems with
piecewise concave ordering costs has been concentrated on
characterizing the structure of the optimal control policy. Porteus
[9,10] showed that a generalized (s,S) policy is optimal for
inventory systems for a class of demand distributions. Fox et al.
[2] considered a specific case of piecewise linear concave ordering
costs, and proved that a generalized (s,S) policy is optimal for a
larger class of demand distributions. Zhang et al. [18] addressed
the same problem under limited order capacities. Yu and Benjafaar
[17] extended earlier results by establishing the optimality of
generalized (s,S) policies for general demand distributions. These
research contributions have ultimately showed that generalized (s,
S) policies are optimal under a large variety of settings. However,
finding the optimal parameters of the generalized (s,S) policy is
still a computational challenge. Also, an important drawback of the
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generalized (s,S) policy is that it does not provide the exact timing
of replenishments in advance. As such, inventory systems con-
trolled by the generalized (s,S) policy are exposed to a great deal of
setup-oriented system nervousness which results in complications
on the coordination between supply chain players (see e.g. [3–
5,7,16].

In this paper, we adopt the (R; S) policy for the stochastic lot
sizing problem with piecewise linear concave ordering costs, and
show that it is a viable alternative to the cost optimal (s,S) policy.
The contribution of the current study is two-fold. First, we
introduce a generalized version of the (R; S) policy for the inven-
tory problem with piecewise linear concave ordering costs, and
present a mixed-integer programming (MIP) formulation thereof.
Secondly, we conduct an experimental study that compares (s,S)
and (R; S) policies, and thus reflect upon the trade-off between the
setup-oriented system nervousness and cost optimality in case of
piecewise concave ordering costs.

The remainder of this paper is organized as follows. Section 2
provides the problem definition. Sections 3 and 4 introduce
solution methods for (s; S) and (R,S) policies, respectively. Section 5
provides an illustrative numerical example for two alternative
policies. Section 6 is devoted to the design and findings of the
computational experiments. Finally, Section 7 draws conclusions.

2. Problem definition and preliminaries

We consider a single product periodic-review finite-horizon
inventory control problem. The planning horizon is comprised of T
periods. The demand ξt in period t is an independent and normally
distributed random variable with known parameters. The demand
distribution may vary from period to period (i.e., demand is non-
stationary). A holding cost h is incurred for each unit carried in
inventory from one period to the next, and a shortage cost p is
incurred for each unit of demand backordered. The ordering cost is
a piecewise linear function of the order size. For the sake of
simplicity, the delivery lead time is assumed to be negligible.

We make use of a multi-supplier inventory control system in
order to ease the exposition of piecewise linear concave ordering
costs. Assume that we have N suppliers with different cost
structures. Placing an order from supplier n incurs a fixed ordering
cost Kn, and a variable unit cost vn. We assume that
K14K24…4KN and v1ov2o…ovN . As such, no supplier is
dominated, and an order could be placed from any of them. Also,
we assume that p4vN . It is easy to see that the setting explained
above leads to a piecewise linear concave ordering cost structure,
such that each supplier corresponds to a particular linear segment.
A piecewise concave ordering cost function implies the following
important property on the optimal ordering policy: it is always
less costly to procure from a single supplier rather than multiple
suppliers in any given period [18]. The problem is then to make the
supplier selection and to determine replenishment schedule as
well as the replenishment quantities so as to minimize the
expected total cost.

The generalized (s,S) policy is optimal for the inventory
problem with piecewise linear ordering costs [17]. The generalized
(s,S) policy extends the traditional (s,S) policy by allowing multiple
re-order and order-up-to levels each of which are associated with
a particular supplier. By means of these critical levels, supplier
selection and replenishment decisions are dynamically made
depending upon the observed inventory position. In a similar
fashion, we adapt the traditional (R; S) policy for multi-supplier
environments. We refer to this new policy as the generalized (R; S)
policy. As opposed to the generalized (s,S) policy, the generalized
(R; S) policy makes the decisions on supplier selection and replen-
ishment schedule at the very beginning of the planning horizon

while determining the replenishment quantities dynamically. In
the following sections, we discuss generalized (s,S) and (R; S)
policies in detail.

3. The generalized (s,S) policy

In this section, we take a closer look at the inventory problem
under consideration, and examine the structure of the optimal
control policy. The expected total cost of the inventory system is
comprised of ordering, holding and penalty costs. If the inventory
position at period t immediately after the delivery is y, then the
sum of expected holding and penalty costs to be incurred during
that period can be written as

LtðyÞ ¼ E hðy�ξtÞþ þpðy�ξtÞ�
� � ð1Þ

where xþ ¼maxf0; xg, and x� ¼maxf0; �xg.
Then, given an initial inventory position of x units, the optimal

expected total cost from period t and onwards can be expressed by
means of the dynamic program

CtðxÞ ¼ min
n ¼ 1;…;N

min
yZx

Knδðy�xÞþvnðy�xÞþLtðyÞþECtþ1ðy�ξtÞ
� �� �

ð2Þ
where δðxÞ ¼ 0 if xr0 and 1 otherwise, and the terminal cost
function CTþ1ðxÞ ¼ 0 for all x.

Yu and Benjafaar [17] transformed the one-dimensional
dynamic program in (2) into an equivalent n-dimensional one,
and exploited its structural properties in order to establish the
optimality of the generalized (s,S) policy. The generalized (s,S)
policy is a multi-level order-up-to policy characterized by a
number of critical parameters in each period t, i.e. smt osm�1

t o
…os1t rS1t oS2t o⋯oSmt for some mrN where N is the number
of suppliers. The ordering rule for period t is (i) if xosmt , then
order up to Stm, (ii) if sitrxosi�1

t , then order up to Si�1
t , and (ii) if

xZs1t , then do not order. We refer the reader to Porteus [9,10], Fox
et al. [2], Zhang et al. [18], and Yu and Benjafaar [17] for a detailed
proof of the optimality of the generalized (s,S) policy.

Although the structure of the optimal policy is known, comput-
ing the parameters of the optimal policy is challenging since it
requires to solve the continuous state space stochastic dynamic
program given above for each and every period within the
planning horizon. Here, an option could be to replace the original
continuous demand distributions with discrete approximations.
Although it is still computationally challenging, this approach
enables one to compute the policy parameters by means of
conventional methods of finite state space stochastic dynamic
programs. In the current study, we employ this approach to
compute the parameters of the optimal policy.

4. The generalized (R; S) policy

The (R; S) policy is an order-up-to policy whose essence lies in
using a rigid replenishment schedule that is established at the
very beginning of the planning horizon while allowing flexibility
in the replenishment quantities. The order quantities are dynami-
cally determined at replenishment epochs so as to raise the
inventory position to prescribed order-up-to levels. Therefore,
the policy specifies the replenishment periods and corresponding
order-up-to levels minimizing the expected total cost.

Hereby, we extend the (R; S) policy to multi-supplier inventory
systems, and refer to this new policy as the generalized (R; S)
policy. If there are multiple suppliers, then the policy should also
accommodate a supplier selection decision. The generalized (R; S)
policy is therefore an order-up-to policy characterized by a set of
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