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a b s t r a c t

In the queueing literature, an arrival process with random arrival rate is usually modeled by a Markov-
modulated Poisson process (MMPP). Such a process has discrete states in its intensity and is able to
capture the abrupt changes among different regimes of the traffic source. However, it may not be
suitable for modeling traffic sources with smoothly (or continuously) changing intensity. Moreover, it is
less parsimonious in that many parameters are involved but some are lack of interpretation. To cope
with these issues, this paper proposes to model traffic intensity by a geometric mean-reverting (GMR)
diffusion process and provides an analysis for the Markovian queueing system fed by this source. In our
treatment, the discrete counterpart of the GMR arrival process is used as an approximation such that the
matrix geometric method is applicable. A conjecture on the error of this approximation is developed out
of a recent theoretical result, and is subsequently validated in our numerical analysis. This enables us to
calculate the performance measures with high efficiency and precision. With these numerical
techniques, the effects from the GMR parameters on the queueing performance are studied and shown
to have significant influences.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One approach to model a time-varying and volatile arrival
process is to consider a Poisson process whose intensity λðtÞ is also
a random process. This is known as a doubly stochastic Poisson
process, or a Cox process (see, e.g. [7,12,2,22]), in which the
randomness in λðtÞ may bring in some desired features. The
well-known MMPP (see, e.g. [8,9,13]) falls into this category in
that the intensity process is modulated by a continuous-time
Markov chain. With proper assumptions (e.g. phase-type distrib-
uted service time), a queueing system fed by an MMPP can be
modeled by a large Markov chain for which some numerical
techniques are readily available (e.g. the matrix geometric method
of Neuts [18]). This makes MMPP a popular model for the traffic
sources with random intensity.

Despite the convenience in modeling and the tractability in
computation, there are some drawbacks of using MMPP as an
arrival process. As commented in [10], there may be too many
parameters involved in an MMPP. Consider the simplest case of a
two-state MMPP, there are four parameters (transition rates
between two states, and arrival rates at these states) to be fit

(see, e.g. the fitting algorithm in [13]). But the number of para-
meters will grow dramatically (at an exponential rate) as the
number of states increases and this limits the use of an MMPP
with more states. In addition to the explosive growth in para-
meters, the lack of intuitive interpretations on these parameters
(e.g. transition rates between states) also makes it difficult to
understand their physical meanings. Furthermore, the abrupt
change in its intensity makes the MMPP unsuitable for modeling
the traffic sources with continuously changing random intensity or
those without contrasting regimes (states).

From the perspective of a parsimonious model with interpre-
table parameters, the MMPP seems less competitive. Some new
models are proposed to address these issues. One example is the
discrete autoregressive (DAR) model (see, e.g. [10,11,15]) which is
able to generate the geometric decaying autocorrelation with
fewer parameters. The present study considers an alternative
way to address the problems with MMPPs. We propose to use a
geometric (GMR) mean-reverting diffusion process to model the
intensity process. Such a process is continuous, positive, and
mean-reverting, in that there is a long term mean and the process
will be pulled back toward this mean when it deviates away. It is
commonly used in finance for modeling asset prices with such
features. For example, in [3,19,20], the GMR is used to model fuel
and electricity prices. Here in the context of queueing, mean-
reversion is motivated by the traffic control mechanism which will
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divert part of incoming traffic away when a line becomes heavily
loaded, and will route some traffic back when it is less busy.
Consider a queue in the middle stage of this line. When the traffic
intensity goes up (down), the mechanism will bring an opposite
effect against this upward (downward) trend. This causes the
traffic intensity to be continuously changing and mean-reverting.
Other motivations of using mean-reverting traffic sources can be
found in recent studies. For example, [24] proposed to use a source
of this kind to model “overdispersion” and “autocorrelation” as
observed in call center traffic arrivals. Compared to modeling the
intensity by a Markov chain, using GMR is able to reflect the
smooth (instead of abrupt) changes in the intensity process. More
importantly, the GMR is more parsimonious since fewer para-
meters are required to characterize the main features and each of
them has clear physical interpretation. When the intensity is
modulated by a GMR process, the arrival process is termed a
GMR–MPP. The differences between Poisson processes with dis-
crete and continuous intensities are depicted in Fig. 1.

To understand how such a continuous-state process influ-
ences the queueing performance, we consider the Markovian
queueing system GMR–MPP/M/s. Because of the continuous
nature in intensity, this system cannot be directly formulated as
a large Markov chain. To make the existing numerical techniques
applicable, we consider its counterpart system as an approxima-
tion, where the arrival process is replaced by DGMR(m)-MPP, a
discrete-state (but still continuous-time) version of GMR-MPP.
This system can be analyzed by the matrix-geometric method,
but it remains to investigate how good the approximation is.
Motivated by a theoretical convergence result, we establish a
conjecture on the relation between the performance measures of
the original and approximate systems. This conjecture is vali-
dated in the subsequent numerical analysis where the errors on
the first fourth moments of queue length and waiting time are
examined. Our results demonstrate that using the matrix geo-
metric method together with Richardson extrapolation is able to
provide very accurate and efficient estimates on the queueing
performance. These numerical techniques are then applied to
investigate the influences from the key traffic parameters on the
queueing performance measures.

This rest of this paper is organized as follows. Section 2
introduces the GMR arrival process as well as its discrete-state
counterpart. Section 3 formulates the counterpart queueing sys-
tem as a large Markov chain and applies the matrix geometric
method to analyze its performance. Section 4 presents the numer-
ical results which validate our conjecture and investigate the
influences from the GMR parameters. Finally Section 5 gives
conclusions.

2. The geometric mean-reverting arrival process

This section introduces the geometric mean-reverting (GMR)
process and defines the GMR–MPP arrival process. We also
introduce its discrete counterpart in order to apply the existing
numerical techniques. For the convenience of the subsequent
queueing analysis, a conjecture is proposed and will be validated
in our numerical study.

A process λðtÞ is said to follow a GMR diffusion process if it
solves the following stochastic differential equation (see [19,20])

d lnλðtÞ ¼ κ θ� lnλðtÞð ÞdtþσdWðtÞ; λð0Þ ¼ λ: ð1Þ
The process λðtÞ is driven by the standard Brownian motion W(t).
Each of the three parameters κ, θ, and σ has its own physical
meaning: κ is the speed of mean reversion, θ is the long-term
mean, and σ is the volatility. If we define XðtÞ ¼ ln λðtÞ, then X(t) is
the well known Ornstein–Uhlenbeck process (originally proposed

in the physical literature [21]) which satisfies the following
stochastic differential equation:

dXðtÞ ¼ κ θ�XðtÞð ÞdtþσdWðtÞ; Xð0Þ ¼ ln λ: ð2Þ
The mean reversion property is seen in its drift term: it will be
pulled up if XðtÞoθ and vice versa. When the OU process is at
steady state, X(t) follows a normal distribution with mean
E½XðtÞ� ¼ θ and variance Var½XðtÞ� ¼ σ2=2κ. Its moment generating
function is given by

E½eαXðtÞ� ¼ exp αθþα2σ2

4κ

� �
: ð3Þ

We are now in a position to define the Poisson process modulated
by the above GMR process and discuss its basic properties.

2.1. The GMR–MPP and its basic properties

The GMR modulated Poisson process (GMR–MPP) is a Poisson
process whose intensity follows a GMR process as in (1). For
convenience, we assume the stationarity of the underlying pro-
cesses λðtÞ and X(t) (i.e. they are already at steady state). For such a
doubly stochastic Poisson process, conditional on the intensity
over the interval ½0; t� (i.e. given λðsÞ;0rsrt), it can be seen as a
time-inhomogeneous Poisson process and the number of arrivals
A(t) during ½0; t� has the following distribution:

PðAðtÞ ¼ nj λðsÞ;0rsrtÞ ¼ e�
R t

0
λðsÞ ds

n!

Z t

0
λðsÞ ds

� �n

; n¼ 0;1;2;…:

Taking expected value over all the random paths, the uncondi-
tional probability distribution of A(t) can be expressed as

PðAðtÞ ¼ nÞ ¼ E
e�

R t

0
λðsÞ ds

n!

Z t

0
λðsÞ ds

� �n
2
4

3
5; n¼ 0;1;2;…:

This distribution is crucial to the queueing performance when the
system is fed by such an arrival process. The above formula also
reveals the complication caused by the randomness in λðtÞ. It is
clear that if σ¼0 or κ-1, this randomness in λðtÞ will disappear
(i.e. λðtÞ ¼ eθ is constant) and the GMR–MPP will degenerate to a
usual Poisson process.

Note that under stationarity X(t) is normally distributed (with
mean and variance given above), the intensity λðtÞ of the GMR–
MPP at any given time t follows a log-normal distribution. By using
(3) with α¼1, its mean is be obtained as

λ ¼ E½λðtÞ� ¼ exp θþ σ2

4k

� �
: ð4Þ

Its variance can also be obtained from (3) with α¼2 as

Var½λðtÞ� ¼ exp 2θþσ2

2κ

� �
exp

σ2

2κ

� �
�1

� �
:

We see that the parameters σ and κ have a major influence on the
variance of intensity. Larger σ (λðtÞ is more volatile) and smaller κ
(λðtÞ is pulled back to its mean more slowly when it moves away)
will lead to larger variance, i.e. the distribution of λðtÞ and in turn
A(t) are more widely spread. These observations suggest that the
triplet ðλ; σ; κÞ is a more meaningful parameter set which is
interchangeable with ðκ; θ; σÞ. As expected, when σ-0 or κ-1,
the variance tends to zero and the GMR–MPP reduces to a Poisson
process.

The focus of this study is on a Markovian queueing systemwith
such a GMR–MPP traffic source. The influence from the mean
intensity λ is better known and more straightforward. We will
mainly investigate the influences from σ and κ on the distribution
of AðtÞ and in turn on the queueing performance.
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