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a b s t r a c t

Many shift scheduling algorithms presume that the staffing levels, required to ensure a target customer
service, are known in advance. Determining these staffing requirements is often not straightforward,
particularly in systems where the arrival rate fluctuates over the day. We present a branch-and-bound
approach to estimate optimal shift schedules in systems with nonstationary stochastic demand and
service level constraints. The algorithm is intended for personnel planning in service systems with
limited opening hours (such as small call centers, banks, and retail stores). Our computational
experiments show that the algorithm is efficient in avoiding regions of the solution space that cannot
contain the optimum; moreover, it requires only a limited number of evaluations to encounter the
estimated optimum. The quality of the starting solution is not a decisive factor for the algorithm's
performance. Finally, by benchmarking our algorithm against two state-of-the-art algorithms, we show
that our algorithm is very competitive, as it succeeds in finding a high-quality solution fast (i.e., with a
limited number of simulations required in the search phase).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many shift scheduling algorithms presume that the staffing
levels, required to ensure a target customer service, are known in
advance: the shift scheduling step then boils down to fitting the
minimum-cost shift schedule to the requirements. Determining
these staffing requirements, however, is often challenging, since in
many real-life systems demand is stochastic and nonstationary
(i.e., the demand rate varies over time). While some authors have
tried to ease this problem by using approximations to estimate the
service levels (see, e.g., [3]), it is known that the “two-step”
approach suffers from a major flaw, as it may result in a
suboptimal schedule [18].

This paper presents an integrated approach to the shift sche-
duling problem with nonstationary stochastic demand: different
staffing combinations are explored using implicit enumeration,
which allows to efficiently estimate the minimum-cost shift
schedule subject to a service level constraint (the probability that
the customer waiting time violates a critical level should not
exceed a user-defined target). The algorithm is flexible in the sense
that it does not rely on any specific methodology to evaluate the

customer service implied by a given shift schedule. We opted to
use simulation in our experiments, because (1) it requires virtually
no restrictions on the assumptions regarding arrival and service
process, and (2) it allows us to include real-life complexities of
which the impact on customer service cannot easily be estimated
analytically, such as customer impatience (abandonments) and the
exhaustive service policy (which implies that servers work over-
time to finish the customer in service at the time their shift ends).
The accuracy of the outcome, however, will depend on the number
of replications used.

The algorithm specifically targets service systems with limited
opening hours (so-called terminating systems, see Law and Kelton
[22]). As the computational effort required to run the algorithm to
completion tends to increase as the solution space grows, the
algorithm is especially suited for systems with a small solution
space: for instance, systems that require a limited number of
workers (such as banks, retail stores, or small call centers), or have
a low to moderate load. Nevertheless, our benchmark results show
that it remains competitive with alternative algorithms (as the
ones proposed by [18] and [2]) even in settings with higher load,
as it is able to find a high-quality solution fast; the effort to verify
that this solution is indeed the optimal solution in these cases will
likely be prohibitive, though.

Our algorithm contributes to the existing literature by propos-
ing straightforward, easy-to-implement rules that efficiently
explore the solution space (as opposed to the more complex and
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time-consuming approach of Atlason et al. [1,2]). Moreover, as it is
simulation-based, the algorithm can more easily handle a variety
of assumptions (such as general service and abandonment pro-
cesses) than the heuristic of Ingolfsson et al. [18], which uses
randomization. As revealed by the benchmark results, the best
solution found by the branch-and-bound algorithm tends to out-
perform the results obtained by the algorithms of Ingolfsson et al.
[18] and Atlason et al. [2].

Section 2 gives a brief discussion of the related literature.
Section 3 presents the formal problem statement. A detailed
description of the algorithm is provided in Section 4. Section 5
discusses the computational experiment, and analyzes the impact
of the fathoming rules and the initial solution. Section 6 bench-
marks the algorithm against the algorithms of Ingolfsson et al. [18]
and Atlason et al. [2]. Finally, concluding remarks are provided in
Section 7.

2. Related literature

Shift scheduling for systems with nonstationary arrival rates
has received relatively limited attention in the academic literature.
The two-step approach, which fits minimum-cost shift schedules
to predefined staffing requirements, is by far the most common
(see Thompson [26,27], Sinreich and Jabali [25], and Izady and
Worthington [20], among others). The main problem, however, is
that the staffing levels required to ensure a target customer service
level are not straightforward to determine. Moreover, the two-step
approach may result in suboptimal shift schedules [14–16],
because several staffing solutions might exist that lead to shift
schedules with substantially varying costs. Alternatively, shift
scheduling can be done directly based on the time-varying arrival
rates [5,13,16,21]. These approaches avoid the suboptimality that
arises by decomposing the problem into two steps. Yet, including
quality of service constraints in the shift optimization is not
straightforward, hence authors commonly resort to simplifying
assumptions (e.g., exponential service and abandonment times).

Our research is closely related to the work of Ingolfsson et al.
[16,18] and Atlason et al. [1,2]. These articles suggest algorithms to
determine low-cost shift schedules with a service level constraint
on customer waiting time. Ingolfsson et al. [16] evaluate schedule
performance by numerical integration of the forward differential
equations for Mt=M=st queues and apply a genetic algorithm to
search for good schedules. Ingolfsson et al. [18] apply a heuristic
cutting-plane algorithm and use the randomization method for
evaluating schedule performance [10,17,19], which is computa-
tionally less expensive but yields similar accuracy [17]. Atlason
et al. [1,2] suggest a cutting plane method that uses simulation to
evaluate customer service, and add cuts based on the estimated
(pseudo)gradients of the service level function (the methodology
was later adapted by Cezik et al. [6] to optimize staffing in
multiskill call centers, adding heuristics to improve the

applicability to large-scale instances). This approach requires
substantial computational effort. Atlason et al. [2] show that their
algorithm converges towards an optimal solution as the number of
replications grows large; in contrast, both Ingolfsson et al. [16] and
Ingolfsson et al. [18] are heuristic approaches, that do not
guarantee an optimal solution.

The approach developed in this paper is easier to implement
than the one proposed in Atlason et al. [1,2], but cannot strictly
guarantee the optimum (see the discussion in Section 4.2.2).
Therefore, we refer to the best solution found as the estimated
optimum.

3. Problem statement and notations

We focus on a single-stage multiserver Mt=G=stþG queue, as
depicted in Fig. 1. The current time is represented by t and ranges
between 0 and time horizon T (i.e., the opening hours of the
service system). Customer arrivals have a time-varying arrival rate
λt (in our numerical experiments, we assume Poisson arrivals;
given that the system is evaluated by simulation, any other type of
arrival distribution could have been used). The service process is
generally distributed with per server service rate μ (which equals
the inverse of the expected service time per unit); the abandon-
ment process is generally distributed with rate θ (the inverse of
the expected time-to-abandon).

The main objective is to estimate an optimal shift schedule,
such that the target customer service is achieved at minimum cost.
The cost is measured in worker hours. In line with the related
literature [4,9,18,20], customer service is measured by the virtual
waiting time Wt at given time instants t, i.e., the waiting time that
an infinitely patient (fictive) customer encounters upon arrival at
time t [12,23,24]. More formally, let tp ¼ f0;Δp;2Δp;…; T�Δpg
represent the set of time instants at which performance is
evaluated (the notations are illustrated in Fig. 2). We then require
the following hard constraint to be met:

PrðWt4τÞrα for all tAtp; ð1Þ
with τ the maximum allowed waiting time, and α the target
probability of excessive waiting. The validity of this constraint is
checked by simulation. Note that for τ¼ 0, Expression (1) corre-
sponds to the delay probability.

Capacity changes can only take place at specific points in time,
i.e., at the start of a staffing interval. Staffing intervals have length
Δs. The set of staffing interval indices is Is ¼ f1;…; Isg with Is � T=Δs

(see Fig. 2). ts ¼ f0;Δs;2Δs;…; T�Δsg contains the staffing interval
start times, for all iAIs (with Δs an integer multiple of Δp, which
implies that tsDtp).

Let vector s¼ fs1;…; sIs g represent the staffing vector, contain-
ing the number of workers in each staffing interval. Assume that
W different pre-defined shift types exist. For any staffing vector s,
the minimum-cost shift solution can be determined by solving the
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Fig. 1. Schematic representation of a single-stage queueing system with time-varying demand.
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