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a b s t r a c t

Consider a dynamic decision making model under risk with a fixed planning horizon, namely the
dynamic capacity control model. The model describes a firm, operating in a monopolistic setting and
selling a range of products consuming a single resource. Demand for each product is time-dependent
and modeled by a random variable. The firm controls the revenue stream by allowing or denying
customer requests for product classes. We investigate risk-sensitive policies in this setting, for which risk
concerns are important for many non-repetitive events and short-time considerations.

Numerically analysing several risk-averse capacity control policies in terms of standard deviation and
conditional-value-at-risk, our results show that only a slight modification of the risk-neutral solution is
needed to apply a risk-averse policy. In particular, risk-averse policies which decision rules are functions
depending only on the marginal values of the risk-neutral policy perform well. From a practical
perspective, the advantage is that a decision maker does not need to compute any risk-averse dynamic
program. Risk sensitivity can be easily achieved by implementing risk-averse functional decision rules
based on a risk-neutral solution.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a dynamic decision model under risk for capacity control
with a given planning time horizon. The decision maker acts on
previous gained information up to a distinct time period and estima-
tions for future time periods. This kind of dynamic decision making
under risk is often modelled by dynamic programming formulations.
Despite some known limitations of expected utility theory, as dis-
cussed by Schoemaker [1], the expected utility approach is often used
with dynamic programming for risk considerations. To this end, dyn-
amic programming uses a utility function as an objective function, and
time preferences can be included by a discount factor. The books by
Chavas [2] and Bertsekas [3] include a description of this approach
from a general perspective.

The considered capacity control model is typical, for example, in
the area of revenue management, whose use is common in industries
such as airlines, hotels or rental cars, in which a firm operates in a
monopolistic setting offering multiple products consuming a single
resource. The firm owns a fixed capacity of the resource which has
to be sold over a finite horizon. The objective of the firm is to find
a policy in order to optimise total revenue by allocating capacity
to different classes of demand. Usually, a risk-neutral optimisation

objective is sufficient for revenue management problems due to the
long-term average effect in situations with repeating decision-
making processes.

There are, however, many situations when the number of reiter-
ations is too small (e.g., Levin et al. [4] mention an event promoter)
or when constraints on working capital or revenue streams force
the use of a dynamic decision model with consideration of risk.
Weatherford [20] observes that analysts were uncomfortable with
risk-neutral objectives and changed waiting lists recommended by
their revenue management systems. This means, they applied man-
ually their own risk-averse policy. In practice, short-time objectives
of management are a motivation for risk aversion as pointed out by
Feng and Xiao [22]. The authors emphasise the obvious effect that
uncertainty in demand, forecast and capacity may lead to a sig-
nificant difference between the realised revenue and expected
revenue. The practitioners' demand for risk aversion has motivated
the research of risk-averse policies and, thus, this paper, too.

Furthermore, recent approaches by Barz and Waldmann [6] and
Huang and Chang [7] propose risk-averse policies for the dynamic
capacity control model. This model is introduced a standard revenue
management model by Lee and Hersh [5] and is originally stated as a
dynamic programming formulation of a risk-neutral policy. Barz and
Waldmann [6] analyse the dynamic capacity control model under
constant absolute risk aversion using an exponential utility as the
objective function in the dynamic programming recursion. Huang
and Chang [7] present a policy which includes a discount factor not
in the objective but in the decision function. This discount factor
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actually determines a risk premium for certainty of earning revenue
now, instead of under uncertainty later. This kind of risk premium is
more easily communicated to practitioners than the exponential
utility function, where the computation of the risk premium
requires certain knowledge about the distribution of the demand
function. Huang and Chang [7] also propose a policy considering the
selling history and conduct an extensive analysis for risk aversion,
comparing standard deviations and Sharpe ratios of risk-neutral and
risk-averse policies.

Our objective is the evaluation of a set of control policies under
risk considerations. To this end, we perform an analysis of the
policies by numerical experiments and look at risk measures in
terms of volatility by the standard deviation and in terms of
downside risk by the conditional-value-of-risk (CVaR). We extend
the analysis of Huang and Chang [7] and propose improved
policies which are also easily implemented in practice. Further-
more, we introduce a new straightforward policy which provides
acceptable results for moderate levels of risk aversion.

The contribution of this paper is an improvement for applying
risk-averse policies. Our presented approach offers advantages for a
decision maker in terms of computational andmemory requirements.
The advantages include less requirements on computing a risk-averse
solution and an easy and understandable way of implementing such a
solution for practitioners. This is achieved as only one dynamic
programming solution is needed for the application of policies of
various levels of risk sensitivity. As decision makers often have to
determine their level of risk aversion by trying out different levels in
simulation, where each level requires a dynamic programming
solution, they benefit from our method which requires only the
risk-neutral solution for each level. Also, the risk-neutral solution can
serve as a basis for applying different levels of risk sensitivity to
certain instances in the same setting, i.e., when the risk level is
changed from instance to instance. Additionally, we propose a policy
which allows to switch risk aversion on or off depending on the
current state of the selling rate. This proposed approach could be used
with a de(activation) of risk aversion dependent on other possible
variables, too.

In particular, we demonstrate that no extra dynamic program-
ming recursions are required for implementing decision rules for
risk-sensitive policies. The risk-averse decision can be applied
directly using the results of the risk-neutral case. In revenue
management terms, it is sufficient to use decision rules directly
with the marginal capacity values of the dynamic programming
solution of the risk-neutral case.

The remainder of this paper is as follows. Section 2 gives a
summary of related work about risk considerations in revenue
management context. We describe the dynamic capacity control
model, risk-neutral and risk-averse policies associated with the model
in Section 3. In Section 4, we present the settings of the numerical
experiments and the obtained risk measures evaluating the policies.
Finally, we summarise and conclude this paper in Section 5.

2. Related work

A general but comprehensive coverage of revenue management
is provided by Talluri and van Ryzin [8] for risk-neutral decision
makers. Chiang et al. [9] give an extensive literature overview of
the field.

The first revenue management model incorporating risk, the
model of Feng and Xiao [10], considers a single-resource problem
with two given prices and allows only one price change. They
define risk by sales variance as a result of price changes. Their
objective function combines expected revenue and a weighted
penalty function for sales variance. The weight determines the
level of risk aversion. Although their model is limited, the derived

result is quite intuitive: risk-averse firms switch to a lower price
sooner than risk-neutral ones. This coincides with the risk-averse
policies described in Section 3, where firms prefer to accept
revenue sooner rather than later.

Lancaster [11] looks at the risk issues in airline revenue manage-
ment from a practical perspective. He illustrates the vulnerability of
revenue management systems by analysing the volatility of historical
data of revenue per available seat mile. He runs several simulations
which highlight the importance of risk considerations under thin profit
margins and high uncertainty. Therefore, he recommends a relative
revenue-per-available-seat-mile-at-risk metric which integrates risk
measurement with the value-at-risk metric. This metric is the expected
maximum of underperformance over a time horizon at a chosen
confidence level. To compare different revenue management strategies,
he proposes the use of the Sharpe ratio instead of direct dual objective
optimisation. This is computationally impractical as revenue distribu-
tions are acquired by history or simulations. The arguments [11] for
using simulations also hold for our approach of comparing risk
measures of different policies for dynamic capacity control.

Risk sensitivity is incorporated by Levin et al. [4] into a dynamic
pricing model of perishable products. Their objective function
consists of maximum expected revenue constrained by a desired
minimum level of revenue with minimum acceptable probability.
This constraint is a value-at-risk formulation, and their approach
corresponds with maximising expected return subject to a small
disaster probability. Risk aversion is introduced in the objective
function as a penalty term reflecting the probability that total
revenues fall below a certain level. Thus, the underlying utility
function at every point in time is piece-wise linear and discontin-
uous at the point of the desired revenue level.

Discussing risk modelling for traffic and revenue management
in networks, Mitra and Wang [12] analyse mean-variance, mean-
standard-deviation and mean-conditional-value-at-risk for formu-
lation of the objective function, finally selecting standard deviation
as the risk index. The impact of several levels of risk aversion is
demonstrated by an efficient frontier for a truncated Gaussian
demand distribution.

Koenig and Meissner [13] compare expected revenue and risk in
terms of standard deviation and conditional-value-at-risk of pricing
policies. A list pricing policy, following capacity control, and a dyn-
amic pricing policy, steadily adjusting prices, are analysed under
consideration of the cost of price changes. They show by numerical
experiments under which circumstances a policy might be more
advantageous over the other.

Robust optimisation [14, cf.] as a means for maximising over a
set of worst case outcomes under guaranteed feasibility has been
used by various authors in a revenue management context. The
worst outcomes are all the smallest revenues under feasible
worst-case demand realisations. The works of Perakis and Roels
[15], Thiele [16] and Lim and Shanthikumar [17] are exemplary for
addressing the problem of uncertainty in the demand function by
robust optimisation. Lim and Shanthikumar [17] show that the
robust pricing problem is equivalent to a single-product revenue
management problemwith an exponential utility function without
model uncertainty.

Mulvey et al. [18] propose a different approach and consider
robustness of solutions in a set of scenarios. They introduce a
penalty function to the objective function to achieve a tradeoff
between optimality and feasibility. Following this approach, Lai
and Ng [19] set up a model for hotel revenue and formulate a
tradeoff between expected revenue and mean absolute deviation.

Using expected utility theory in the revenue management
context is endorsed by Weatherford [20]. He discusses the assump-
tion of risk-neutrality for a standard revenue management algo-
rithm and concludes that optimising expected utility instead of
expected revenue is a suitable risk-averse strategy. In particular, he
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