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In this paper the stochastic dynamic lot sizing problem with multiple items and limited capacity under
two types of fill rate constraints is considered. It is assumed that according to the static-uncertainty
strategy of Bookbinder and Tan [2], the production periods as well as the lot sizes are fixed in advance for
the entire planning horizon and are executed regardless of the realisation of the demands. We propose
linear programming models, where the non-linear functions of the expected backorders and the
expected inventory on hand are approximated by piecewise linear functions. The resulting models are
solved with a variant of the Fix-and-Optimize heuristic. The results are compared with those of the
column generation heuristic proposed by Tempelmeier [14].

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lot sizing problems occur in industrial practice, when a produc-
tion process can only start after a setup of the required resources
with associated setup time and/or setup costs has been completed. In
the literature, numerous lot sizing approaches for different produc-
tion situations have been proposed. Particularly relevant for opera-
tional production planning in manufacturing companies are dynamic
lot sizing models, as they consider demands and orders of varying
sizes associated with specific due dates.

The majority of the lot sizing literature focusses on the situation
when all data are deterministically known in advance. Industrial
planning practice usually applies a forecasting procedure that pro-
vides a deterministic time series of the expected future demands.
Uncertainty is taken into consideration by reserving a fixed amount
of inventory as safety stock. The amount of this reserve stock is
usually computed by simple rules of thumb, e.g. the standard dev-
iation of the demand during the risk period is multiplied by a
quantile of the standard normal distribution. In this way, it is usually
not possible to meet a target service level. In addition, the effect of
the lot sizes on the risk hedging is not taken into consideration. For
example, with large lot sizes it may be optimal to provide no safety
stock at all.

In this paper, we consider the stochastic dynamic multi-item
capacitated lot sizing problem (SCLSP), which is the stochastic
counterpart of the well-known deterministic dynamic multi-item
capacitated lot sizing problem (CLSP). The problem can be described
as follows. We consider a single resource, which is used to produce K
ðk¼ 1;2;…;KÞ items with dynamic random period demands Dkt

over a planning horizon of T ðt ¼ 1;2;…; TÞ periods. For product k,
the demands Dkt are random variables with forecasted period-spe-
cific expectation EfDktg and variance VfDktg. The period capacities of
the resource are bt ðt ¼ 1;2;…; TÞ.

We assume that the “static-uncertainty strategy” according to [2] is
in place, which means that at the beginning of the planning horizon
the complete production plan is fixed, including the timing and the size
of production quantities. Unlike the “dynamic-uncertainty strategy”
and the “static-dynamic-uncertainty strategy” which result in random
lot sizes, this strategy has the advantage that it is possible to construct a
production plan that respects limited capacities with certainty.

This problem definition reflects the scenario that can be obs-
erved in MRP planning environments and in so-called Advanced
Planning Systems. With given setup sk and holding costs hk ðk¼
1;2;…;KÞ, we seek to determine production quantities to satisfy the
time-varying random period demands so as to minimize the sum of
setup and holding costs. Inventory holding costs are charged on the
inventory at the end of each period. As backlog costs are usually
difficult if not impossible to quantify, we assume that a β service
level (fill rate) is used as a performance criterion.

The β service level relates the total amount backordered to the
total demand observed during a given time span, whereby the
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backorder in period t, Bt, depends on the demand observed in period
t, Dt, and the available inventory at the beginning of period t. In
stochastic inventory systems, under stationary conditions, usually the
long-term average fill rate is considered. However, the β service level
can also be calculated for any finite number of periods (see [1,4,17]).
Let Y ðtÞ be the cumulated demand and let BðtÞ be the cumulated
backorders from period 1 to t. Then the fill rate calculated w.r.t.
periods 1 to t, βt, is defined as βt ¼ 1�BðtÞ=Y ðtÞ.

As an alternative to βt, the cycle service level βc relates the
backorders within a replenishment cycle to the demand that occurs
in that cycle. This criterion can only be calculated if the cycle length is
known. If two production orders are released in, for example, periods
3 and 6, then the coverage time of the first order runs from period
3 to 5. For the calculation of the βc service level the backorders,
which newly occur in periods 3 to 5 are added and related to the
demands of these three periods. A βc service level constraint is more
restrictive than a β constraint, because it requires the achievement of
the target in each and every cycle. A bad performance in one cycle
cannot be compensated by a good performance in a different cycle,
which would be possible with the β criterion.

It can be shown that βc can be expressed in terms of cumulated
backorders and cumulated demands. If two consecutive order cyc-
les ði�1Þ and i end in periods τi�1 and τi, respectively, then βcðτiÞ is
defined as

βcðτiÞ ¼ 1� BðτiÞ �Bðτi� 1Þ

Y ðτiÞ �Y ðτi� 1Þ; ð1Þ

where the numerator describes the net backorders, which newly
occurred in cycle i and the denominator is the corresponding dem-
and. There is an interesting relation between βτi , βτi� 1

, and βcðτiÞ,
which is useful for the formulation of a lot sizing model. At the end
of period τi, the finite period service level is defined as

βτi ¼ 1�BðτiÞ

Y ðτiÞ: ð2Þ

Similarly, at the end of period τi�1, we have

βτi� 1
¼ 1�Bðτi� 1Þ

Y ðτi� 1Þ: ð3Þ

Now, assume that the production quantities are set such that at
the end of each production cycle the finite period service levels are
equal: βτi ¼ βτi� 1

¼ X.
Then

ð1�XÞ � Y ðτiÞ ¼ BðτiÞ ð4Þ
and

ð1�XÞ � Y ðτi� 1Þ ¼ Bðτi� 1Þ ð5Þ
Taking the difference between (4) and (5), we obtain

ð1�XÞ � Y ðτiÞ �Y ðτi� 1Þ
� �

¼ BðτiÞ �Bðτi� 1Þ
� �

ð6Þ

or

1�X ¼ BðτiÞ �Bðτi� 1Þ

Y ðτiÞ �Y ðτi� 1Þ ¼ 1�βcðτiÞ: ð7Þ

Hence, if lot sizes are set such that βτi ¼ βτi� 1
, then βcðτiÞ ¼ βτi ¼

βτi� 1
. As a consequence, it is possible to meet a βc service level

target through the introduction of surrogate βt service level
constraints in a lot sizing model. This is what we are proposing
in this paper. Thereby, in the constraints of the model, we quantify
the actual service level by the ratio of the expected values of
the backorders and the demands, which is only exact for an inf-
inite time horizon. As for a limited time horizon t the relation
1�ð EfBt=YtgÞZ 1�EfBg=EfYg� �

holds [1], this is a conservative
approximation which ensures that the target set by the manage-
ment will be met.

The rest of this paper is organized as follows. In Section 2 the
relevant literature is reviewed. In Section 3 we describe the pro-
blem in detail. The model formulations are presented in Section 4.
Following, the solution approach is presented in Section 5. The
results of a numerical experiment are reported in Section 6. Fin-
ally, Section 7 contains some concluding remarks.

2. Literature

In the literature, we observe a rapidly increasing amount of
papers on stochastic lot sizing problems. However, only a limited
number of researchers have considered dynamic capacitated lot
sizing problems with random demand and service level constraints.
Reviews of stochastic lot sizing problems which deal with multiple
items produced on a single resource with limited capacity are pre-
sented by Sox et al. and Winands et al. [10,18] and in chapter E in
[15]. Sox and Muckstadt [11] solve a variant of the stochastic
dynamic CLSP, where item- and period-specific backorder costs as
well as extendible production capacities are considered. The authors
propose a Lagrangean heuristic to solve the resulting non-linear int-
eger programming problem that is repeatedly applied in a dynamic
planning environment. Brandimarte [3] considers the stochastic
CLSP where the uncertainty of the demand is represented by a sce-
nario tree. In this case, the period demands are modeled as discrete
random variables. The evolution of demand over time is depicted
with a directed layered tree, where each layer corresponds to a
planning period and the nodes are linked to realizations of the disc-
rete stochastic demand process. The resulting large-scale determi-
nistic MIP model is then solved with a commercially available solver
using rolling schedules with lot sizing windows. As demonstrated by
Brandimarte [3], the scenario-based approach suffers from a dra-
matically increasing complexity, if the number of periods and/or the
number of possible outcomes of the period demands are incr-
eased. In addition, currently there are no scenario-based models
available which could account for product-specific fill rate con-
straints. Tempelmeier and Herpers [16] propose a formulation of the
dynamic capacitated lot sizing problem under random demand,
when the performance is measured in terms of a fill rate per cycle βc.
They propose the ABCβ heuristic which is an extension of the A/B/C
heuristic proposed for the solution of the deterministic CLSP by
Maes and van Wassenhove [8]. A different solution approach which
outperforms the ABCβ heuristic is presented in [14]. The author
proposes a heuristic solution procedure that combines column gen-
eration and the ABCβ heuristic. Helber et al. [7] consider a formula-
tion of the stochastic CLSP with a so-called δ service level constraint
which takes the duration of stockouts into consideration. They
develop a model where the nonlinear functions of expected backlog
and expected inventory on hand are approximated by use of piec-
ewise linear segments. The resulting piecewise linear model is sol-
ved with a MIP-based heuristic.

In the current paper we extend the linearized MIP model of [7]
through the introduction of β service level constraints, which are
more common in industrial practice. In addition, we extend the basic
model through the introduction of setup carry-overs, which lead to a
better representation of the dynamic lot sizing problem. We apply a
Fix&Optimize heuristic to solve a large number of test problem ins-
tances and compare the results with the results of the column
generation heuristic proposed by Tempelmeier [14].

3. Problem statement

We consider K products that are produced to stock on a single
resource with limited period capacities bt (t ¼ 1;2;…; T). The pla-
nning situation is completely identical with the classical CLSP with
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