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a b s t r a c t

A Wireless Sensor Network (WSN) is the outcome of the collaborative effort of multi-functional, low-
power, low-cost, tiny electronic devices called sensors. Their ability to work autonomously provides a
distributed environment capable to monitor even remote or inaccessible areas, which explains the wide
application range of WSNs. There are four main issues in the design of a WSN: determining sensor
locations (deployment), scheduling sensors, finding sink locations, and obtaining sensor-to-sink data
routes. Sensors have very limited energy resources and their efficient management becomes critical for
elongating network lifetime. As a result, most of the works on optimal WSN design are concerned with
efficient energy usage. Unfortunately, only a few of them use an integrated approach and try to address
these four issues simultaneously. In this work we also follow this line of research and develop first a
monolithic mixed-integer linear programming model that maximizes network lifetime by optimally
determining sensor and sink locations, sensor-to-sink data flows, active and stand-by periods of the
sensors subject to data flow conservation, energy consumption and budget usage constraints. Then we
propose a nested solution method consisting of two procedures: simulated annealing that performs search
for the best sink locations in the outer level and Lagrangian relaxation based heuristic employed with
weighted Dantzig–Wolfe decomposition for the multiplier update in the inner level, which determines
sensor locations, activity schedules of the sensors and data flows routes. We demonstrate the efficiency
and accuracy of the new approach on randomly generated instances by extensive numerical experiments.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless Sensor Networks (WSNs) are formed by the collaborative
effort of a large number of small, low-power, low-cost, autonomous,
multi-functional electronic devices called sensors which are deployed
over a designated region called the sensor field. Each sensor can collect
data from the area within its sensing range and transfer it to a central
receiver called sinks either directly or indirectly. The indirect transfer
of data from a sensor occurs by means of other sensors that transmit
the data to neighboring sensors lying within their communication
range. This mechanism is called hopping. The collaboration of multiple
sensors provides a distributed monitoring environment in a wide
variety of applications [33]. During its lifetime, a sensor can be in
active or stand-by (i.e., inactive) mode. An active sensor can perform
sensing, data receiving and transmitting activities that are energy

consuming operations. A sensor in standby mode, on the other hand,
consumes a negligible amount of energy.

There are four fundamental design issues when the goal is to set
up a WSN. The first one is the determination of a sensor placement
or deployment plan that provides the required sensing quality at
discretized points in the sensor field. This is called the Coverage
Problem (CP). If every point in the sensor field has the same
importance in terms of the coverage requirements, then we talk
about uniform coverage. However, if the points are not equally
critical, namely some of them require a higher level of surveillance
while some others do not, we deal with differentiated coverage. The
second design issue is about scheduling the sensors, i.e., setting
their active and standby periods and called the Scheduling Problem
(SP). The best locations of the sinks are the subject of the third
design issue addressed in the Sink Location Problem (SLP), where
the aim is to find the fixed locations of the sinks in applications
with static sinks and sink trajectories when mobile sinks are
involved in the application. Finally, planning data transmission
from sensors to sink(s), which is an energy consuming activity,
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constitutes the fourth design issue. The (Data) Routing Problem (RP)
aims at finding the most energy-efficient sensor-to-sink data
routes. Note that in order to solve this problem both sensor
locations and sink locations (or sink trajectories) as well as the
schedules of the sensors should be known. We remark that sink
locations (trajectories) and sensor-to-sink routes have a significant
impact on the energy spent for data transmission, which is a
primary factor in increasing the lifetime of the WSN. Another
important point to emphasize is the multi-period or dynamic
setting within which these problems must be formulated. This
stems from the fact that the active and standby duration of the
sensors needs to be determined and the sensor-to-sink data routes
may change in time depending on the depletion of the battery
energy of the sensors.

All these design issues are translated into mathematical models
by means of the following decision variables: location variables for
sensor deployment and sink placement, time-dependent flow
variables for data routing, and time-dependent scheduling vari-
ables for active and standby periods of sensors. Since these
decisions are interrelated with each other, we have to consider
them within a unified framework in order to obtain the most
efficient WSN design. However, many of the existing studies
concentrate on one type of decision only. For instance, Altınel
et al. [2] try to find optimal sensor locations satisfying the given
coverage requirements. Similarly, the papers by Wang et al. [31],
Basagni et al. [4,5], and Keskin et al. [18] are the works that address
the determination of the optimal sink locations for maximum
network lifetime. The majority of the existing integration effort is
spent for unifying the SLP and RP. For instance, the papers by
Gandham et al. [10], Azad and Chockalingam [3], and Alsalih et al.
[1] try to find energy-efficient sink locations and data routes. They
all assume that the time is divided into rounds of equal-length
periods and they handle each round independently. Luo and
Hubaux [24] handle this deficiency by a mixed integer linear
programming (MILP) model which determines sink locations in
different periods simultaneously. These four papers aim to obtain
good WSNs by means of optimization models concentrating on the
energy usage rather than the network lifetime. On the contrary,
Papadimitriou and Georgiadis [26] try to maximize the network
lifetime by the optimal determination of sink locations and data
routes. Gatzianas and Georgiadis [11] revisit the models of Papa-
dimitriou and Georgiadis [26], and produce a distribution strategy
for their model. Yun and Xia [34] extend the model of Papadimi-
triou and Georgiadis [26] and develop two new models that are
appropriate for delay tolerant applications. Yun et al. [35] and
Behdani et al. [6] propose decomposition algorithms for one of the
models given by Yun and Xia [34] and implement it in a distributed
setting where only the local sensor characteristics are considered.
Finally, Güney et al. [13] and Luo and Hubaux [25] study a very
similar problem to that of Papadimitriou and Georgiadis [26] but
take multiple sinks into account.

There are relatively few studies that try to integrate at least three
of the above-mentioned decisions. Güney et al. [14] revisit the setting
of Güney et al. [13] by also determining optimal sensor deployment in
addition to sink placement and data routing. This is the first attempt
to simultaneously consider CP and SLP along with RP, where the
authors propose a heuristic method consisting of two nested loops.
Türkoğulları et al. [27–29] further extend the model of Güney et al.
[14] by integrating the SP to also find out the best activity schedules
of the sensor in order to maximize the lifetime of the WSN. The
difference between these papers lies in the solution method
employed. Türkoğulları et al. [27] develop a Lagrangian heuristic
and a two-stage heuristic in which sensors are deployed and an
activity schedule is found in the first stage, whereas sinks are located
and sensor-to-sink data flow routes are determined in the second
stage. The main idea of the disjoint sets heuristic devised in

Türkoğulları et al. [29] is to find a disjoint connected sensor set in
each period so that the points in the sensor field are covered at the
required quality. A column generation based heuristic is proposed in
Türkoğulları et al. [28] based on a reformulation of the original MILP.
The linear programming relaxation of the reformulation is solved by
column generation in the first phase of this heuristic, while the
second phase consists of constructing a feasible solution for the
original problem using the columns obtained in the first phase.

All three papers assume a sufficiently long planning horizon
consisting of T periods of 12 h each and define a time index
t ¼ 1;…; T to be used in decision variables. This modeling technique
is relatively inefficient since time is discretized by dividing into
periods of equal length, which results in a very large number of
binary decision variables. It is reported in Türkoğulları et al. [28] that
although one of the state-of-the-art commercial MILP solvers CPLEX
is given a larger amount of time than that required by the heuristic to
solve instances with more than 100 points in the sensor field of
rectangular grid structure, it cannot generate a feasible solution.

Keskin et al. [19] adopt a different modeling framework to incor-
porate time, and generate several MILP models with the objective of
lifetime maximization. These models gradually integrate the WSN
design decisions mentioned earlier and investigate empirically the
effect of integration on the lifetime of the WSN by comparing the
objective values of the MILP models. The novelty in these models is
that rather than dividing the planning horizon into discrete time
periods of equal length, time is taken continuously and the periods are
determined by the events as will be further clarified in the next
section. However, since the solutions are obtained only on the basis of
the Gurobi solver, large-sized instances remain to be unsolved. Keskin
et al. [20] develop two heuristics for the integrated model with mobile
sinks rather than static sinks which is addressed in this paper.

In this study, we tackle the integrated problem with static sinks,
where sensor deployment, activity scheduling of the sensors, sink
placement, and data routing decisions are made concurrently. For the
solution of this problem, we introduce a nested heuristic that consists
of two phases. The first phase involves a search over the candidate
sink locations using simulated annealing. In the second phase, we
solve the reduced problem by a Lagrangian heuristic when the sink
locations are fixed. The reduced problem can be decomposed into
easy-to-solve subproblems and is amenable to develop an algorithm
which eventually converges to the Lagrangian dual of the reduced
problem using weighted Dantzig–Wolfe decomposition. A feasible
solution is generated by making the use of the optimal solutions of the
subproblems at each iteration.

The remainder of the paper is organized as follows. In the next
section, we give the MILP model formulated for the integrated
problem with static sinks. We provide the details of the heuristic
approach in Section 3. Section 4 contains the numerical results given
by the suggested heuristic on a large number of test instances.
Finally, Section 5 concludes the paper by summarizing the contribu-
tions and points out possible future research directions.

2. Formulation of the MILP model

Before we give the MILP formulation of our model for the
integrated design of a WSN, we describe the parameters and decision
variables used in the model. We consider a sensor field consisting of a
finite set of points to be monitored, and denote it byK. Each point has
a coverage requirement dk, kAK. Namely, the number of sensors that
can cover point k must be equal to or exceed dk. Besides the number
of sensors, there are also other measures to define coverage. For
example, the coverage requirement may be based on the total sensing
intensity at point k generated by all deployed sensors. There may exist
different sensor types that can be deployed at potential sensor
locations in the sensor field. We let R and S denote the set of sensor
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