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a b s t r a c t

We introduce the Multiple Traveling Salesmen and Districting Problem with Multi-periods and Multi-
depots. In this problem, the compactness of the subdistricts, the dissimilarity measure of districts and an
equity measure of salesmen profit are considered as part of the objective function, and the salesman
travel cost on each subdistrict is approximated by the Beardwood–Halton–Hammersley formula. An
adaptive large neighbourhood search metaheuristic is developed for the problem. It was tested on
modified Solomon and Gehring & Homberger instances. Computational results confirm the effectiveness
of the proposed metaheuristic.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem considered in this paper is the Multiple Traveling
Salesman and Districting Problem with Multi-Periods and Multi-
Depots, where the customers of a sales territory dynamically evolve
over the periods of a planning horizon. The problem consists of
designing districts and subdistricts for a multiple traveling salesman
problemwith dynamic customers over several periods. Each salesman
services all customers of his district over the planning horizon but
performs a single route in a subdistrict in each period. The customers
on the territory vary dynamically over the planning horizon. A pro-
portion η of the customers of the previous period leave the territory,
and a proportionψ of new customers enter it. Typically the number of
customers of a territory will tend to increase over time. However, all
information on customers, which includes their number and loca-
tions, is available at the beginning of each period. There also exist
several depots on the territory at reasonable locations. The number of
depots and their locations are static over time. Fig. 1 depicts a territory
partitioned into districts and subdistricts, with depots, periods and
salesmen's routes.

The problem is defined on an undirected graph G¼ ðV ; E; PÞ,
where P ¼ f1;…; Tg is the set of periods, V ¼D [ V1 [ … [ VT is
the vertex set, D is the depot set at which the salesmen are located, Vt

is the set of customers at period t, and E¼ fðvi; vjÞ : vi; vjAV ; io jg is
the edge set. A symmetric matrix of Euclidean travel times, equal to
travel costs, is defined on E. The problem consists of designing several

contiguous districts served in each period and subdistricts served in
each working day such that (1) all customers within the same district
are served by the same salesman, (2) each customer is visited once by
one salesman, (3) a service time s is incurred when visiting a cus-
tomer, (4) each salesman route has a normal duration limit h, but
overtime is paid at rate θ if its duration exceeds h, and (5) an objective
function combining salesman cost (number of districts), a subdistrict
compactness measure, a district partition dissimilarity measure and a
salesmen profit equity measure is minimised.

Several companies, such as Coca-Cola, DHL and FedEx, face this
problem. They need to segment or partition their customers into
clusters or territories in order to efficiently handle marketing and
distribution decisions over different periods, and the customer base is
not static. In such contexts, it is desirable to consistently assign almost
the same customers to each salesman, to create relatively stable
districts, and to design equitable subdistricts in terms of workload.

There exists a rich literature on districting. Most of it deals with
deterministic problems. The relevant papers include the drawing of
political districts [28,5,6,21] the design of school districts [14], the
construction of police districts [10], districting for home-care services
[4], the alignment of commercial territories [37,12,20,31,26], and the
solution of location-districting problems [29,7]. Research on stochastic
districting problems has mostly been conducted in the context of
vehicle routing. Haugland et al. [18] have considered the problem of
designing districts for vehicle routing problems with stochastic dem-
ands. The demands are assumed to be uncertain at the time when the
districts are designed, and these are revealed only after the districting
decisions are determined. A tabu search heuristic was provided for the
problem. Lei et al. [24] proposed a vehicle routing and districting
problem with stochastic customers. The problem was modeled and
solved as a two-stage stochastic program in which the districting
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decisions are made in the first stage and the Beardwood–Halton–
Hammersley formula was used to approximate the expected routing
cost of each district in the second stage. A large neighbourhood search
metaheuristic was also developed for the problem. Carlsson and
Delage [9] introduced a robust framework for distributing the load
of a vehicle routing problem over a fleet of vehicles when the location
of demand points and their distribution are not knownwith certainty.
Carlsson [8] has studied an uncapacitated stochastic vehicle routing
problem in which vehicle depot locations are fixed and customer
locations in a service region are unknown, but are assumed to be
independent and identically distributed from a given probability
density function.

To the best of our knowledge, this paper is the first to consider
dynamic customers in the context of a joint multiple traveling sale-
smen and districting problem with multi-periods and multi-depots.
We have considered the salesman cost, the subdistrict compactness
measure, a district partition dissimilarity measure and a salesman
profit equity measure in the objective function. Instead of explicitly
determining the salesman routes, we approximate their cost by
means of the Beardwood–Halton–Hammersley theorem [3]. We int-
egrate this approximationwithin a large neighbourhood search meta-
heuristic for the districting phase.

The remainder of the paper is organised as follows. The mathe-
matical model is presented in Section 2. An adaptive large neigh-
bourhood search metaheuristic for the problem is described in
Section 3, followed by computational experiments in Section 4,
and by conclusions in Section 5.

2. Mathematical model

We introduce the following additional notation: Vt ¼ f1;…;ntg is
the set of the customers on the territory at period t, where nt is the
associated number of the customers; D¼ fD1;…;DZg is the set of
the depots, and Dt

k is the depot assigned to district k at period t; mt

is the number of districts at period t; Vt
k is the customer set which

are located in the district k at period t, Vt
k;i is the customer set which

are located in the subdistrict i of district k at period t, and ntk is the
number of the customers in district k at period t; a is the unit
revenue generated by serving a customer; h is the duration limit of
a route; dtk;i is the distance between Dt

k and the customer of Vt
k;i

closest to Dt
k.

We assume that a period lasts several weeks with a maximum
number of working days each week (e.g., from Monday to Friday).
The problem is modeled as follows. For period t, the solution is a
decomposition of Vt into mt districts, and partition of district Vt

k

into stk subdistricts, each of which corresponding to a salesman
tour on a working day. A feasible district and subdistrict plan
x¼ Vt

1fVt
1;1;…;Vt

1;st1
g;…;Vt

mt fVt
mt ;1;…;Vt

mt ;st
mt
g

n o
must satisfy fol-

lowing constraints: (1) 8Dt
k;D

t
kAD; (2) fVt

1;…;Vt
mt g is a partition

of Vt; (3) fVt
k;1;…;Vt

k;st
k
g is a partition of district Vt

k.
After the design of districts and subdistricts, the closest depot

Dt
kðDt

kADÞ to the district Vt
k is assigned to the district, and the cost

of the salesman tour on fDt
kg [ Vt

k;i is computed for each subdistrict
Vt
k;i. The workload of a subdistrict Vt

k;i is approximated as the
length of an optimal traveling salesman problem tour over Vt

k;i,
plus twice the distance dtk;i between Dt

k and the customer of Vt
k;i

closest to Dt
k. The number mt of designed districts at period t is a

decision variable.
The objective of the model is

min
x

FðxÞ ¼ ∑
T

t ¼ 1
αmmtþαcompF

t
compðxÞþαdissimF

t
dissimðxÞþαequF

t
equðxÞ

� �
;

ð1Þ

where x denotes a feasible solution. The objective function mini-
mises the sum over mt of districts, of the compactness measure
FtcompðxÞ of the subdistricts, the dissimilarity measure FtdissimðxÞ of
the district partition, and of the equity measure FtequðxÞ of the
salesmen over all periods, weighted by the positive user-defined
parameter αm, αcomp, αdissim and αequ. The computation of FtcompðxÞ,
FtdissimðxÞ and FtequðxÞ is detailed in Sections 2.1, 2.2 and 2.3
respectively.

2.1. Compactness measure of the subdistricts

As in Bozkaya et al. [6], we use the following formula to mea-
sure the compactness of a subdistrict:

FtcompðxÞ ¼ ∑
mt

k ¼ 1
∑
stk

i ¼ 1
Bt
k;iðxÞ�Bt

 !
2Bt ∑

mt

k ¼ 1
stk

 !
;

,
ð2Þ

where Bt
k;iðxÞ and Bt are respectively the perimeters of subdis-

trict Vt
k;i and of the entire territory at period t in solution x, stk

Fig. 1. An example of a territory partitioned into districts and subdistricts, with two depots and salesmen's routes over two periods.
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