
Testing local search move operators on the vehicle routing problem
with split deliveries and time windows

Marcus E. McNabb n, Jeffery D. Weir, Raymond R. Hill, Shane N. Hall
Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson AFB, OH 45433, USA

a r t i c l e i n f o

Available online 26 November 2014

Keywords:
Heuristic
Vehicle routing problem
Time windows
Split delivery
Ant colony optimization
Local search

a b s t r a c t

The vehicle routing problem (VRP) is an important transportation problem. The literature addresses
several extensions of this problem, including variants having delivery time windows associated with
customers and variants allowing split deliveries to customers. The problem extension including both of
these variations has received less attention in the literature. This research effort sheds further light on
this problem. Specifically, this paper analyzes the effects of combinations of local search (LS) move
operators commonly used on the VRP and its variants. We find when paired with a MAX-MIN Ant
System constructive heuristic, Or-opt or 2-optn appear to be the ideal LS operators to employ on the VRP
with split deliveries and time windows with Or-opt finding higher quality solutions and 2-optn requiring
less run time.

Published by Elsevier Ltd.

1. Introduction

The vehicle routing problem (VRP) is an important transportation
problem that seeks an optimal solution for constructing delivery
routes given a depot, a fleet of vehicles and a some number of
geographically dispersed customers, each having a demand that
must be fulfilled. The problem also incorporates characteristics such
as travel times and/or distances as well as side constraints such as a
maximum vehicle load. This problem is important due to both its
widespread application and its complexity in solving. See [1] for a
more thorough review of the VRP. The literature addresses several
extensions of this problem, including variants having delivery time
windows associated with customers (VRPTW) and variants allowing
split deliveries to customers (SDVRP). The problem extension includ-
ing both of these variations has received less attention in the
literature. This research sheds further light on this problem, which
is important because the addition of these two features more
accurately represents important real-world applications of the VRP.
Furthermore, the problem and methods used to approach the
problem may differ significantly in the presence of these additional
characteristics, implying the need for research expressly dedicated to
these variants.

Others have explored the effect of splitting loads in further
detail. For example, Archetti et al. [2] show empirically the value of
the splitting option in a VRP, concluding the splitting option is
most effective in problems with a mean customer demand of just

over half of the vehicle capacity. Nowak et al. [3] reach a similar
conclusion for a pickup and delivery problem with split loads
(PDPSL). Nowak et al. [4] also delve into the problem character-
istics and empirically show their impact on the solution. However,
this research focuses on a problem with both split deliveries and
time windows. In the context of the vehicle routing problem with
divisible deliveries and pickups (VRPDDP), Nagy et al. [5] claim
“one should expect that if there are very tight maximum time
constraints applied, then splitting is unlikely to be beneficial,
because vehicles will not be filled to capacity anyway.” Further
research into this conjecture [6] supports this statement, showing
the impact of time windows on the solution tends to increase as
the mean customer demand decreases relative to the vehicle
capacity and the vehicles are generally only filled to about 2/3
capacity in those instances. Logically, this conclusion makes sense
because more splits means more deliveries, and in the presence of
tight time window constraints, more deliveries puts more stress
on the time constraints. Therefore, the inclusion of time windows
calls into question the validity of broadly extending results from
the PDPSL, VRPDDP, and even the SDVRP directly to the SDVRPTW
because the presence of time windows may significantly alter the
problem structure and therefore the solution structure. Further-
more, the ratio of customer demand to vehicle capacity in the
problem sets used here (see Section 3.2) does not meet the
threshold of one half agreed upon by these sources. Therefore,
an empirical analysis into the characteristics of the SDVRPTW and
their impact on solution quality, as well as a comparison of those
results with the work from the SDVRP, PDPSL, and VRPDDP, is
warranted and accomplished in a separate article (see [6]). This
particular vein of research focuses on the effect of the choice of LS
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on the solution quality and run time, a factor none of the previous
works address.

Specifically, this paper analyzes the effects of combinations of
local search (LS) move operators commonly used on the VRP and
its variants to empirically determine the combination best suited
to generating good solutions for the VRP with split deliveries and
time windows (SDVRPTW) within an ant colony optimization
(ACO) metaheuristic and is organized as follows. Section 2 pre-
sents background on the problem and provides a literature review,
Section 3 describes the test problems and experimental design for
the computational results presented in Section 4, and, finally,
Section 5 concludes with findings and areas for future research.

2. Background

This section will cover the relevant literature for the SDVRPTW
with a brief overview on LS operators and the ACO metaheuristic.
This section will also discuss these heuristics as they have been
applied to the VRP, focusing specifically on applications involving
the VRPTW, SDVRP, or SDVRPTW.

2.1. LS for SDVRPTW

Archetti and Speranza [7] offer a concise review of existing work
for the SDVRP. They cover both heuristic and exact methods
employed thus far, emphasizing the improvements in solutions to
various test problems seen when comparing traditional VRP solu-
tions without split deliveries to solutions allowing split deliveries.
This research will focus in particular on the applications of LS
operators from these research efforts.

Feillet et al. [8] use a branch-and-price algorithm to solve
examples of the SDVRPTW exactly. However, like the VRP and
many of its variants, the SDVRPTW is NP-hard [9] and exact
solutions are difficult to come by, generally requiring extremely
long computation times. Frizzell and Giffin [10] first introduce LS to
the SDVRPTW, pairing two operators – moving a customer to a new
route or swapping customers between routes – with a look-ahead
construction heuristic. They employ the LS on problems using grid
network distances. Ho and Haugland [11] use a tabu search to tackle
the SDVRPTW, employing the following LS operators: Relocate –

moves a customer to new route; Relocate-split – splits a customer's
load and moves those two loads to new routes; Exchange – trades a
pair of customers on separate routes; and 2-optn – exchanges the
last m customers from one route with the last n customers of
another route. Campos et al. [12] adapt the Clarke–Wright savings
algorithm to the SDVRPTW to develop an initial solution and then
use a genetic algorithm to improve this initial solution. Belfiore
et al. [9] use scatter search to generate solutions for the SDVRPTW.

Many LS operators are employed in approximating solutions for
the VRP and its variants. Some of the most popular or promising
operators are now discussed. As seen above, Ho and Haugland [11]
successfully utilize four LS operators (Relocate, Relocate-split,
Exchange, and 2-optn) on the SDVRPTW. In addition to these
operators, one question this research will address is how well LS
operators from the VRPTW and SDVRP variants extend to the
SDVRPTW. Dror and Trudeau [13], generally regarded as the first
to investigate the SDVRP, introduce the 2-split-interchange LS
operator, which is also the basis for the Relocate-split operator
described above. Aleman et al. [14]introduce a Shiftn operator for
the SDVRP. The Shiftn operator is similar to the Exchange operator
described above except it allows for a partial shift of one of the
customers. Derigs et al. [15] introduce a series of LS operators
specific to the SDVRP, including Combine, Relocate, and another
operator similar to the Relocate-Split LS operator; additionally, the
authors introduce the concept of combining a split delivery and

introducing a new route for this delivery. Braysy and Gendreau [16]
detail many LS operators used to generate solutions for the VRPTW,
including 2-optn, Or-opt, and Cross Exchange. These three LS
operators prove very popular and effective in the VRP literature
(see [17–23]). Each of these methods is described in further detail in
Section 4. For further details, see [7] for the SDVRP and [1] and [16]
for the VRPTW.

2.2. LS performance analysis

None of the LS implementations on the SDVRPTW discussed
above make any explicit argument for why a particular LS operator
is chosen. None tested the LS operators to show the one (or
several) chosen was the best choice for the problem. Rather, LS
operators are most likely chosen based on successful implementa-
tions on other variants of the VRP.

Others have undertaken the task of comparing the performances
of LS operators for several variants of the VRP and related problems,
but none have specifically investigated the SDVRPTW. Stutzle [24]
investigates the effects of several LS operators on the traveling
salesman problem, the quadratic assignment problem, and the flow
shop problem when paired with an ACO metaheuristic. Van
Breedam [25] analyzes the effectiveness of several LS operators,
paired with several different solution construction heuristics, for
the VRPTW and the pickup and delivery problem. Braysy and
Gendreau [16] further analyze LS operators when applied to the
VRPTW. Derigs et al. [15] investigate the effects of LS operators on
the SDVRP. However, this literature review revealed no work done
to investigate the effects of LS operators when applied to the
SDVRPTW.

2.3. Metaheuristics

Testing the performance of the LS operators requires combining
these LS operators with a construction heuristic into a metaheuristic.
This research effort uses an ACO metaheuristic. This metaheuristic is
chosen for two reasons: first, it is successfully implemented on the
VRP and several of its variations (see [20–22,26]); and second, it is
studied less extensively than other metaheuristics such as tabu
search (see [1,27]). The ACO metaheuristic was first introduced by
Dorigo [28]. The ACO metaheuristic iteratively constructs a series of
solutions [29] where each ant provides an instance of a solution
construction. Ants probabilistically add components to their indivi-
dual solutions until reaching a complete solution. The addition of
components is based on heuristic and pheromone information about
the problem. In the case of a VRP, the heuristic information consists
of the edge costs (e.g., cost or time to transit a commodity over a
given edge). The pheromone information is gleaned from previous
solutions. More specifically, each edge is initialized with the same
amount of pheromone. As a portfolio of solutions is built, a local
pheromone update decreases the pheromone on those edges used
in building a solution while a global pheromone update deposits
additional pheromone onto the “good” edges. In general, a “good”
edge is one included in what is deemed a high-quality solution (e.g.,
“global best” or “iteration best” solution). The local pheromone
update encourages exploration of new solutions while the global
update encourages exploitation of high-quality solutions.

A literature review of ACO algorithms reveals the application of
LS greatly enhances the performance of many ACO implementa-
tions [29]. The LS is generally implemented after an ant has
constructed a complete solution, at which time the LS attempts
to improve this solution. This coupling tends to work well because
ACO algorithms perform a rather coarse-grained search meaning a
solution is generally amenable to improvement via LS. Meanwhile
the primary issue with LS is the generation of a starting solution.
Therefore, the combination of these two methods tends to yield
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