
Minimizing weighted earliness–tardiness on parallel machines
using hybrid metaheuristics

R. Alvarez-Valdes a,n, J.M. Tamarit a, F. Villa b

a University of Valencia, Department of Statistics and Operations Research, Burjassot, Valencia, Spain
b Polytechnic University of Valencia, Department of Applied Statistics and Operations Research, and Quality, Valencia, Spain

a r t i c l e i n f o

Available online 6 September 2014

Keywords:
Scheduling
Earliness-tardiness
Parallel machines
Hybrid metaheuristics
Path Relinking
Scatter Search

a b s t r a c t

We consider the problem of scheduling a set of jobs on a set of identical parallel machines where the
objective is to minimize the total weighted earliness and tardiness penalties with respect to a common
due date. We propose a hybrid heuristic algorithm for constructing good solutions, combining priority
rules for assigning jobs to machines and a local search with exact procedures for solving the one-
machine subproblems. These solutions are then used in two metaheuristic frameworks, Path Relinking
and Scatter Search, to obtain high quality solutions for the problem.

The algorithms are tested on a large number of test instances to assess the efficiency of the proposed
strategies.

The results show that our algorithms consistently outperform the best reported results for this
problem.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In Just-In-Time scheduling we are concerned not only with job
tardiness but also with earliness. Tardy jobs, completed after their
due date, have negative effects such as contract penalties, custo-
mer discontent, loss of sales and loss of reputation, but early jobs,
completed before their due date, also have non-desirable effects
such as inventory carrying costs, storage and insurance costs, and
product deterioration. Therefore, criteria involving both earliness
and tardiness costs are receiving increased attention in machine
scheduling research (see the books by Józefowska [1] and by
Rios-Mercado and Rios-Solis [2] for surveys of models and algorithms
in this area).

In this paper we consider the problem of scheduling a set of
jobs on identical parallel machines where the objective is to
minimize the total weighted earliness and tardiness penalties
with respect to a common due date. In practice, problems with a
common due date appear when a set of products has to be sent
together to a client or when a set of components is produced to be
assembled in a later phase.

The problem can be defined as follows. There are n jobs to be
processed on M identical parallel machines. All the jobs have the
same due date d. For each job i, its processing time pi, and its
penalties per period of earliness αi and per period of tardiness

βi, are known. No preemption is allowed, all the jobs are available
at time zero and the machine is continuously available for work.
If we denote the completion time of job i by Ci, the objective is
min∑n

i αiEiþβiT i; where Ei ¼maxfd�Ci;0g and Ti ¼maxfCi�d;0g.
Therefore, there is a double problem to be solved: an assignment

problem of the n jobs to the M machines and a sequencing problem
on each machine to decide which jobs will finish before their due
date, incurring an earliness penalty, which ones will be completed
after their date, incurring a tardiness penalty, and if there will be a
job finishing exactly on the due date, without any cost.

When tackling this objective function, two cases can be
distinguished. We consider a problem as unrestricted, following
the definition provided by Webster [3], if the optimal cost cannot
decrease with increases in the common due date. In practice, this
means that we can put as many jobs as we want before the due
date because the interval ð0; dÞ is large enough. In the restrictive
case, the due date affects the optimal schedule. In this paper we
consider that we are dealing with the restrictive case and there-
fore we will have to check whether the jobs we want to process
before the due date really do fit into the interval ð0; dÞ. Obviously,
the algorithms that solve the restrictive case also solve the
unrestricted one.

According to the classification by Graham et al. [4], the problem
can be denoted as Pjdi ¼ drj∑iðαiEiþβiT iÞ, where P is the identical
parallel machine environment and di ¼ dr means that all the
jobs share the same restrictive due date. Several common due-date
scheduling surveys have been done by Baker and Scudder [5], Gordon
et al. [6] and Lauff and Werner [7]. The restrictive one-machine

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.08.020
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ34963544308; fax: þ34963543238.
E-mail address: ramon.alvarez@uv.es (R. Alvarez-Valdes).

Computers & Operations Research 54 (2015) 1–11

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.08.020
http://dx.doi.org/10.1016/j.cor.2014.08.020
http://dx.doi.org/10.1016/j.cor.2014.08.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.020&domain=pdf
mailto:ramon.alvarez@uv.es
http://dx.doi.org/10.1016/j.cor.2014.08.020
http://dx.doi.org/10.1016/j.cor.2014.08.020


problem 1jdi ¼ drj∑iðαiEiþβiTiÞ is already NP-hard, and the parallel
case is not any easier. In fact, Pjdi ¼ dr j∑iðαiEiþβiT iÞ inherits the
characteristic of being NP-hard from the parallel machine problem
Pjj∑iwiCi (see Brucker [8]).

There are not many studies on this problem. Sun and Wang [9]
consider the identical parallel machine problem with a loose
common due date Pjdi ¼ dlj∑iðαiEiþβiT iÞ (where dl stands for a
loose due date), where the weight wi of each job is proportional to
its processing time. They show that even for M¼2, the problem is
NP-hard in the ordinary sense. They formulate a dynamic program-
ming algorithm and develop two list-scheduling heuristics. Chen
and Powell [10] propose a column generation algorithm for the
problemwith a loose common due date Pjdi ¼ dlj∑iðαiEiþβiT iÞ and
they solve instances of up to 60 jobs to optimality with a branch &
bound algorithm. Rios-Solis and Sourd [11] are the only authors
who have addressed the restrictive case Pjdi ¼ drj∑iðαiEiþβiTiÞ,
developing a neighborhood search algorithm. The related problem
in which each job has a different due date has been studied by
Kedad-Sidhoum et al. [12], who propose lower bounds based on
relaxations of time-indexed integer formulations and a simple and
effective heuristic.

Any algorithm that solves this problem has two decisions to
address: how to assign jobs to machines and how to sequence the
jobs assigned to each machine. Our approach to these two
questions, and therefore our contributions in this study, are as
follows:

� We first develop several heuristic rules for assigning jobs to
machines. We use two different strategies and design several
priority rules based on combinations of job characteristics
(processing times, earliness and tardiness penalties). We also
include an assignment rule that learns from the other rules.

� The set of jobs assigned to each machine is then sequenced by
solving the quadratic programming models we designed in an
earlier study for the one-machine subproblems (see Alvarez-
Valdes et al. [13]). Our previous results show that even for short
computing times these models can provide very good, if not
optimal, solutions to the sequencing problem.

� The two procedures described above are used not to build a
solution, but a set of feasible solutions, one for each assignment
criterion. We cannot expect that any of these criteria could
provide a good job assignment for every possible instance, but
we think that each criterion can contribute some good partial
assignments which could be combined to obtain better solu-
tions. In order to achieve this, we have designed two proce-
dures: a Path Relinking algorithm, which builds paths in the
solution space, linking the individual solutions provided by
the first two phases, and a Scatter Search algorithm which
builds new solutions by systematically combining each pair of
solutions.

� These metaheuristic procedures obtain high quality solutions
with reduced computing times even for large problems with
200 jobs, improving on the results reported in the literature.
The comparison with the lower bound by Kedad-Sidhoum et al.
[12] also shows that the solutions obtained are very near to
optimal.

The remainder of the paper is organized as follows. In Section 2
we summarize the results of the one-machine models used in the
algorithms. In Section 3 we describe the parallel machine problem
in detail and outline the algorithmic scheme. Section 4 contains
the constructive algorithms, while Section 5 is devoted to the local
search. Sections 6 and 7 describe the Path Relinking and Scatter
Search procedures, respectively. Section 8 contains the test
instances and the computational results. Finally, in Section 9 we
draw some conclusions and discuss future research.

2. The one-machine problem

In the one-machine problem there is a set of jobs to be
processed on one machine, all of them with the same due date
d. The one-machine problem has been extensively studied. From
previous studies we know that there is always an optimal solution
satisfying three properties:

1 An optimal schedule does not contain any idle time between
consecutive jobs (Cheng and Kahlbacher [14]).

2 The optimal schedule is V-shaped around the common due
date. Jobs completed before or on the due date are scheduled in
non-increasing order of pi=αi, and jobs starting on or after the
due date are scheduled in non-decreasing order of pi=βi (Baker
and Scudder [5]).

3 In the optimal schedule, either the first job starts at time zero
or there is a job finishing on the due date (Hoogeveen and van
de Velde [15]).

According to Property 3, in a previous study (Alvarez-Valdes et al.
[13]) we developed two different quadratic models: Model 1 for
solving the instances where the optimal solution has a job finishing
on the due date and Model 2 for those where the optimal solution
starts at time zero.

The efficiency of both models was tested using the set of 280
test instances generated by Biskup and Feldman [16]. The set
includes instances with 10, 20, 50, 100, 200, 500 and 1000 jobs,
with different due-date tightness.

The main findings of that computational study were:

� Model 1 was solved very fast, even for large instances of 1000
jobs. Moreover, even if the solution process is truncated by a
tight time limit, the solutions obtained were very near the
optimal solutions. Therefore, solving this Model 1 with limited
time can be seen as a good heuristic method for the one-
machine earliness–tardiness problem.

� Model 2 was much slower to solve. For instances of more than
20 jobs there is no guarantee that a good solution can be found
in a reasonable time.

In this study, when using Models 1 and 2 for solving one-
machine subproblems, we adopt the following strategy:

� For subproblems involving up to 15 jobs, both Models are
solved and the best solution is kept.

� For subproblems with more than 15 jobs, only Model 1 is
solved.

3. Solving the parallel machine problem

For solving the parallel machine problem we could have tried
the quadratic models developed in the previous section, adapting
them to M machines. However, the resulting model is much more
complex and it is not able to produce good solutions in reasonable
times. Therefore, we propose an algorithmic scheme in which the
one-machine models are used, but combined with heuristic
priority rules and a local search.

The solution process is divided into three phases:

� Phase 1: Constructing a set of feasible solutions
Phase 1 is in turn divided into two steps:
1. Assign jobs to machines according to heuristic criteria
2. Solve the corresponding one-machine subproblems using

the models in the previous section

R. Alvarez-Valdes et al. / Computers & Operations Research 54 (2015) 1–112



Download English Version:

https://daneshyari.com/en/article/475088

Download Persian Version:

https://daneshyari.com/article/475088

Daneshyari.com

https://daneshyari.com/en/article/475088
https://daneshyari.com/article/475088
https://daneshyari.com

