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a b s t r a c t

We consider a problem arising in the context of industrial production planning, namely the multi-
product discrete lot-sizing and scheduling problemwith sequence-dependent changeover costs. We aim
at developing an exact solution approach based on a Cut & Branch procedure for this combinatorial
optimization problem. To achieve this, we propose a new family of multi-product valid inequalities
which corresponds to taking into account the conflicts between different products simultaneously
requiring production on the resource. We then present both an exact and a heuristic separation
algorithm which form the basis of a cutting-plane generation algorithm. We finally discuss computa-
tional results which confirm the practical usefulness of the proposed inequalities at strengthening the
MILP formulation and at reducing the overall computation time.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider an optimization problem arising in the context
of industrial production planning, namely a lot-sizing problem.
Lot-sizing arises in production planning whenever changeover
operations such as preheating, tool changing or cleaning are
required between production runs of different products on a
machine. The amount of the related changeover costs usually does
not depend on the number of products processed after the change-
over. Thus, to minimize changeover costs, production should be run
using large lot sizes. However, this generates inventory holding costs
as the production cannot be synchronized with the actual demand
pattern: products must be held in inventory between the time they
are produced and the time they are used to satisfy customer
demand. The objective of lot-sizing is thus to reach the best possible
trade-off between changeover and inventory holding costs while
taking into account both the customer demand satisfaction and the
technical limitations of the production system.

An early attempt at modelling this trade-off can be found in
[19] for the problem of planning production for a single product on
a single resource with an unlimited production capacity. Since this
seminal work, a large part of the research on lot-sizing problems
has focused on modelling operational aspects in more detail to
answer the growing industry need to solve more realistic and
complex production planning problems. An overview of recent

developments in the field of modelling industrial extensions of lot-
sizing problems is provided in [11].

In the present paper, we focus on one of the variants of lot-
sizing problems mentioned in [11], namely the multi-product
single-resource discrete lot-sizing and scheduling problem or
DLSP. As defined in [7,11], several key assumptions are used in
the DLSP to model the production planning problem:

� A set of products is to be produced on a single capacitated
production resource.

� A finite time horizon subdivided into discrete periods is used to
plan production.

� Demand for products is time-varying (i.e. dynamic) and
deterministically known.

� At most one product can be produced per period (small bucket
model) and the facility processes either one product at full
capacity or is completely idle (discrete or all-or-nothing pro-
duction policy).

� Costs to be minimized are the inventory holding costs and the
changeover costs.

In the DLSP, it is assumed that a changeover between two
production runs for different products results in a changeover cost.
Changeover costs can depend either on the next product only
(sequence-independent case) or on the sequence of products
(sequence-dependent case). We consider in the present paper the
DLSP with sequence-dependent changeover costs (denoted DLSPSD in
the sequel). Sequence-dependent changeover costs are mentioned in

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.08.022
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ33 1 69 15 42 26.
E-mail address: celine.gicquel@lri.fr (C. Gicquel).

Computers & Operations Research 54 (2015) 12–20

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.08.022
http://dx.doi.org/10.1016/j.cor.2014.08.022
http://dx.doi.org/10.1016/j.cor.2014.08.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.022&domain=pdf
mailto:celine.gicquel@lri.fr
http://dx.doi.org/10.1016/j.cor.2014.08.022
http://dx.doi.org/10.1016/j.cor.2014.08.022


[11] as one of the relevant operational aspects to be incorporated into
lot-sizing models. Moreover, a significant number of real-life lot-sizing
problems involving sequence-dependent changeover costs have been
recently reported in the academic literature: see for instance [4] for an
injection moulding process, [17] for a textile fibre industry or [6] for
soft drink production.

A wide variety of solution techniques from the Operations
Research field has been proposed to solve lot-sizing problems: the
reader is referred to [3,10] for recent reviews on the corresponding
literature. The present paper belongs to the line of research
dealing with exact solution approaches, i.e. aiming at providing
guaranteed optimal solutions to the problem. A large amount of
existing solution techniques in this area consists in formulating
the problem as a mixed-integer linear program (MILP) and in
relying on a Branch & Bound type procedure to solve the obtained
MILP. However the computational efficiency of such a procedure
strongly depends on the quality of the lower bounds used to
evaluate the nodes of the search tree. In the present paper, we
seek to improve the quality of these lower bounds so as to
decrease the total computation time needed to obtain guaranteed
optimal solutions.

Within the last 30 years, much research has been devoted to the
polyhedral study of lot-sizing problems in order to obtain the tight
linear relaxations and improve the corresponding lower bounds:
see e.g. [15] for a general overview of the related literature. In
particular, valid inequalities which reduce the volume of the linear
relaxation solution space by cutting off irrelevant parts have been
proposed for several variants. Inequalities to strengthen the Capaci-
tated Lot Sizing Problem (CLSP) are thus proposed in [1,13,14].
Contributions focusing specifically on the Discrete Lot Sizing Problem
(DLSP) can be found in [2,5,8,18]. However, the known inequalities
mainly exploit the underlying single-product subproblems and thus
fail at capturing the conflicts between multiple products sharing the
same resource capacity. This leads in some cases to significant residual
integrality gaps for multi-product instances. In the present paper, we
propose a new family of multi-product multi-period inequalities
which enables us to partially remedy this difficulty for the DLSPSD.
We then discuss both an exact and a heuristic algorithm to solve the
corresponding separation problem. To the best of our knowledge, this
is one of the first attempts at proposing multi-product valid inequal-
ities for discrete lot-sizing problems.

The main contributions of the present paper are thus twofold.
First we introduce a new family of valid inequalities representing
conflicts on multi-period time intervals between several products
simultaneously requiring production on the available resource.
Second we formulate the corresponding separation problem as a
quadratic binary program and propose to solve it either exactly by
relying on a quadratic programming solver or approximately through
a variable depth search heuristic algorithm of Kernighan–Lin type
(see [12]). The results of our computational results show that the
proposed inequalities are efficient at strengthening the linear relaxa-
tion of the problem and at decreasing the overall computation time
needed to obtain guaranteed optimal solutions of the DLSPSD.

The remainder of the paper is organized as follows. In Section 2,
we recall the initial MILP formulation of the multi-product DSLPSD as
well as the previously published inequalities for the underlying
single-product subproblems. We then present in Section 3 the
proposed multi-product inequalities and discuss in Section 4 both
an exact and a heuristic algorithm to solve the corresponding
separation problem. Computational results are provided in Section 5.

2. MILP formulation of the DLSPSD

In this section, we first recall the initial MILP formulation of the
DLSPSD. We use the network flow representation of changeovers

between products, which was discussed among others in [2], as
this leads to a tighter linear relaxation of the problem. We then
present the inequalities proposed in [18] to strengthen the under-
lying single-product subproblems.

2.1. Initial MILP formulation

We wish to plan production for a set of products denoted
p¼ 1…P to be processed on a single production machine over a
planning horizon involving T periods indexed t ¼ 1…T . Product
p¼0 represents the idle state of the machine and period t¼0 is
used to describe the initial state of the production system.

Production capacity is assumed to be constant throughout the
planning horizon. We can thus w.l.o.g. normalize the production
capacity to one unit per period and apply a pretreatment on the
original demand matrix resulting in a demand matrix containing
only binary numbers (see [2,7,9]). We denote dpt the demand for
product p in period t: dpt ¼ 1 in case there is a demand for product
p in period t corresponding to producing p at full capacity in a
period, dpt ¼ 0 otherwise. Furthermore, we denote hp the inven-
tory holding cost per unit per period for product p and Spq the
sequence-dependent changeover cost to be incurred whenever the
resource setup state is changed from product p to product q.

Using this notation, the DLSPSD can be seen as the problem of
assigning at most one product to each period of the planning
horizon while ensuring demand satisfaction and minimizing both
inventory and changeover costs. We thus introduce the following
binary decision variables:

� ypt where ypt ¼ 1 if product p is assigned to period t,
0 otherwise.

� wpqt where wpqt ¼ 1 if there is a changeover from product p to
product q at the beginning of t, 0 otherwise.

This leads to the following MILP formulation denoted DLSPSD0
for the problem:

Zn ¼min ∑
P

p ¼ 1
∑
T

t ¼ 1
hp ∑

t

τ ¼ 1
ðypτ�dpτÞþ ∑

P

p;q ¼ 0
Sp;q ∑

T�1

t ¼ 1
wp;q;t ð1Þ

∑
t

τ ¼ 1
ypτZ ∑

t

τ ¼ 1
dpτ 8p; 8 t ð2Þ

∑
P

p ¼ 0
ypt ¼ 1 8 t ð3Þ

yp;t ¼ ∑
P

q ¼ 0
wq;p;t 8p; 8 t ð4Þ

yp;t ¼ ∑
P

q ¼ 0
wp;q;tþ1 8p; 8 t ð5Þ

yptAf0;1g 8p; 8 t ð6Þ

wp;q;tAf0;1g 8p; 8q; 8 t ð7Þ

The objective function (1) corresponds to the minimization of
the inventory holding and changeover costs over the planning
horizon. ∑t

τ ¼ 1ðypτ�dpτÞ is the inventory level of product p at the
end of period t. Constraints (2) impose that the cumulated demand
over interval ½1; t� is satisfied by the cumulated production
over the same time interval. Constraints (3) ensure that, in each
period, the resource is either producing a single product or idle.
Constraints (4) and (5) link setup variables ypt with changeover
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