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a b s t r a c t

Swarm intelligence is a branch of artificial intelligence that focuses on the actions of agents in self-
organized systems. Researchers have proposed a bee colony optimization (BCO) algorithm as part of
swarm intelligence. BCO is a meta-heuristic algorithm based on the foraging behavior of bees. This study
presents a hybrid BCO algorithm for examination timetabling problems. Bees in the BCO algorithm
perform two main actions: forward pass and backward pass. Each bee explores the search space in
forward pass and then shares information with other bees in the hive in backward pass. This study found
that a bee decides to be either a recruiter that searches for a food source or a follower that selects a
recruiter bee to follow on the basis of roulette wheel selection. In forward pass, BCO is supported along
with other local searches, including the Late Acceptance Hill Climbing and Simulated Annealing
algorithms. We introduce three selection strategies (tournament, rank and disruptive selection
strategies) for the follower bees to select a recruiter to maintain population diversity in backward pass.
The disruptive selection strategy outperforms tournament and rank selections. We also introduce a self-
adaptive mechanism to select a neighborhood structure to enhance the neighborhood search. The
proposed algorithm is evaluated against the latest methodologies in the literature with respect to two
standard examination timetabling problems, namely, uncapacitated and competition datasets. We
demonstrate that the proposed algorithm produces one new best result on uncapacitated datasets
and comparable results on competition datasets.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Timetabling problems are NP-hard problems [1] that represent
an important subdivision of optimization problems in Operations
Research. Timetabling problems exist in many forms. This study
solely focuses on Examination Timetabling Problems (ETTPs). ETTPs
can be considered as the process to allocate a set of examinations
into a limited number of timeslots while satisfying a predetermined
set of constraints, both hard and soft. Hard constraints should not be
violated in any case to achieve a feasible timetable. Soft constraints
represent the quality of the timetable, such that their violations
must be minimized [2]. Carter et al. [3] introduced a set of 13 real-
world ETTPs from three Canadian high schools in 1996 [4]. Burke
et al. [2] described the problem constraints. Furthermore, the second
International Timetabling Competition (competition datasets) intro-
duced three tracks of timetabling problems (one for examination
and two for course timetabling) that included more real world
constraints, as explained in Section 2.

Researchers have proposed and applied many meta-heuristic
approaches for solving ETTPs [2–4]. Some approaches are popula-
tion-based, in which an algorithm works on a number of solutions
and tries to improve them. Population-based approaches can be
categorized as either evolutionary algorithms (EA) or swarm intelli-
gence (SI)-based algorithms [6,7]. SI relies on the cooperative
behavior of self-organized systems to develop meta-heuristics that
mimic the system's problem solving [8,9,25]. Local communication
between individuals and their environment contributes to the
collective intelligence of social colonies [10]. SI characteristics moti-
vated a number of researchers to employ such behavior for optimi-
zation problems [11]. SIs, including an ant algorithm [12], fish swarm
optimization algorithm [13], and artificial bee colony algorithm [15],
have been widely used to solve ETTPs in the literature.

Bee colony optimization (BCO) is a population-based, coopera-
tive search metaphor inspired by the foraging behavior of bees. We
propose a hybrid BCO algorithm for ETTPs.

This work has three main contributions to the BCO algorithm. First,
a population of individuals that evolve according to the nature of the
disruptive selection strategy is maintained. Second, the algorithm
is prevented from becoming stuck (no available improvement of
neighbors) at local optima through a self-adaptive mechanism that
monitors the neighborhood search. Third, a local search algorithm
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[late acceptance hill climbing algorithm (LAHC)] is internally modified
by applying a self-adaptive mechanism to monitor the search.

Experimental results show that algorithm behavior improves
when we employ the abovementioned modifications. All modifica-
tions were compared and analyzed on the basis of their effects.
Overall comparison indicates that the proposed algorithm obtains
one better result compared with current state-of-the-art approaches.

The remainder of this paper is structured as follows: Section 2
presents a brief description of ETTP benchmarks. Section 3
discusses the details of the original BCO algorithm. Section 4
explains the proposed modifications to the basic BCO algorithm.
Section 5 presents the proposed BCO algorithm. Section 6 presents
our experimental results and comparisons. Section 7 concludes the
research work carried out in this paper.

2. Examination timetabling problems

2.1. Uncapacitated datasets

Carter et al. [3] introduced the uncapacitated dataset ETTP in
1996.The problem does not consider a room capacity requirement
when constructing a timetable. This problem has one hard constraint
(clash-free) in that a student cannot sit two examinations during the
same period when producing a feasible timetable. The soft constraint
imposed is to spread examinations as evenly as possible throughout
the examination period. As in Burke and Newall [8], ETTPs contain
inputs as listed below as follows:

� N is the number of examinations.
� Ei is an examination, iA{1… N}.
� T is the given number of available timeslots.
� M is the number of students.
� C¼(cij)NxN is the conflict matrix with each element denoted by

cij, i,jA{1,…,N}, the number of students taking examinations i
and j.

� tk (1rtkrT) specifies the assigned timeslot for examination k
(kA{1,…,N}).

The objective function to minimize the sum of proximity costs
is formulated below as follows [33]:

∑N�1
i ¼ 1 F1ðiÞ
M

ð1Þ

where

F1ðiÞ ¼ ∑
N

j ¼ iþ1
cij proximity ðti; tjÞ ð2Þ

and

proximity ðti; tjÞ ¼
25=2jti � tj j if 1r jti�tjjr5
0 otherwise

(
ð3Þ

subject to

∑
N�1

i ¼ 1
∑
N

j ¼ iþ1
cijλðti; tjÞ ¼ 0

where

λ ti; tj
� �¼ 1 if ti ¼ tj

0 otherwise

�
ð4Þ

Eq. (2) represents the examination cost, which is the proximity
value multiplied by the number of conflicting students. Eq. (3)
presents a proximity value between two examinations [3]. Eq. (4)
represents a clash-free requirement so no student is asked to sit
two examinations at the same time. Table 1 shows the character-
istics of the uncapacitated dataset [4].

2.2. Competition datasets

The formulation represents an examination timetabling model
that incorporates a significant number of real-world constraints. This
formulation was introduced as part of Track 3 of the second
International Timetabling Competition (competition datasets). Com-
petition datasets contain real-world constraints and are considered
to be complex and more practical datasets than uncapacitated
datasets. A complete description of the dataset and the objective
function are available in [5].

The benchmark instances for this problem are taken from
(http://www.cs.qub.ac.uk/itc2007/index.htm). Table 2 shows the
characteristics of these datasets.

The feasibility of the timetable in competition datasets relates
to the assignment of all examinations to a period and room
without violating the hard constraints listed below as follows [5]:

� No students sit for more than one examination at the same time.
� The total number of students assigned to each room cannot

exceed the room capacity.
� The length of examinations assigned to each timeslot should

not violate the timeslot length.
� The examination sequences must be respected; for example,

Exam_A must be scheduled after Exam_B.
� Room-related hard constraints must be satisfied; for example,

Exam_A must be scheduled in Room 2.
Table 1
Characteristics of the uncapacitated datasets.

Datasets Number of
timeslots

Number of
examinations

Number of
Students

Conflict
density

car92 32 543 18,419 0.14
car91 35 682 16,925 0.13
ear83 I 24 190 1125 0.27
hec92 I 18 81 2823 0.42
kfu93 20 461 5349 0.06
lse91 18 381 2726 0.06
pur93 I 42 2419 30,032 0.03
rye92 23 486 11,483 0.07
sta83 I 13 139 611 0.14
tre92 23 261 4360 0.18
uta92 I 35 622 21,267 0.13
ute92 10 184 2750 0.08
yor83 I 21 181 941 0.29

Table 2
Characteristics of the competition datasets.

Datasets D1 D2 D3 D4 D5 D6 D7 CD

Exam_1 7891 32 543 54 7 12 0 5.05
Exam_2 12,743 35 682 40 49 12 2 1.17
Exam_3 16,439 24 190 36 48 170 15 2.62
Exam_4 5045 18 81 21 1 40 0 15.0
Exam_5 9253 20 461 42 3 27 0 0.87
Exam_6 7909 18 381 16 8 23 0 6.16
Exam_7 14,676 42 2419 80 15 28 0 1.93
Exam_8 7718 23 486 80 8 20 1 4.55

D1¼Number of students. D2¼Number of actual students in the datasets.
D3¼Number of examinations. D4¼Number of timeslots D5¼Number of rooms.
D6¼Period hard constraints. D7¼Room hard constraints. CD¼Conflict density.
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