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a b s t r a c t

This paper addresses the multicommodity capacitated fixed-charge network design problem with
nonbifurcated flows and hop constraints. We present and compare mathematical programming
formulations for this problem and we study different relaxations: Lagrangean relaxations, linear
programming relaxations, and partial relaxations of the integrality constraints. In particular, we show
that the Lagrangean bound obtained by relaxing the flow conservation equations is tighter than the
linear programming relaxation bound. We present computational results on a large set of randomly
generated instances.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let G¼ ðV ; EÞ be a directed graph, where V is the set of nodes
and E is the set of arcs. Let also K be a set of commodities, where
each commodity kAK is defined by an origin node sk, a destination
node tk, and a demand dk to be routed from sk to tk. Each arc eAE
has a capacity ue that satisfies uer∑kAKd

k. For each unit of
commodity k going through arc e, a nonnegative routing cost ce

k

has to be paid. Moreover, a nonnegative design cost fe applies if
there is a positive flow of any commodity on arc e. We consider the
multicommodity capacitated fixed-charge network design problem
with nonbifurcated flows and hop constraints (MCFDH) in which we
want to minimize the sum of routing and design costs, while
satisfying the demands and the capacity constraints. In addition,
each commodity k has to be routed on a single path (nonbifurcated
or unsplittable flows) whose length must not exceed lk. These hop
constraints are useful in the context of reliability and quality of
service in telecommunication and transportation networks, where
limiting the number of arcs can reduce the probability of informa-
tion loss or avoid unacceptable delays. When fe¼0, eAE, and
lk ¼ jEj, kAK , the MCFDH reduces to the multicommodity integral
flow problem, which is NP-hard even if the number of commodities
is two [15]. Thus, the MCFDH is itself NP-hard.

Network design problems with bifurcated (or splittable) flows
have been well studied (see [16], and the references therein).
Problems in which demands cannot be split arise in several
applications in the areas of telecommunication and transportation.
Brockmüller et al. [7] study a capacitated network design problem
with non-linear costs arising in the design of private line net-
works; a similar problem is treated in Dahl et al. [14]. In Gavish
and Altinkemer [17] a non-linear network design problem is
studied, while in Balakrishnan et al. [4] the authors present a
decomposition algorithm for trees. Barnhart et al. [5] present a
column generation model and a branch-and-price-and-cut algo-
rithm for the integer multicommodity flow problem.

Problems involving hop constraints have been studied for
minimum spanning tree problems in Gouveia et al. [23], Dahl
et al. [13], Gouveia and Requejo [24], Gouveia [18,19], and for
Steiner tree problems in Costa et al. [9] and Voß [29], in which
both model the design of centralized telecommunication networks
with minimum cost, as well as in Balakrishnan and Altinkemer [3]
for more general telecommunication network design problems.
Survivability in network design problems, which deals with the
design of networks that can survive arc or node failures, is
investigated in Botton et al. [6], Gouveia et al. [21,22], Alevras
et al. [1,2]. The effect of hop limits on the optimal cost is studied in
Orlowsky and Wessäly [27] for a telecommunication network
design problem. The convex hull of hop-constrained st-paths in a
graph is studied in Dahl [11] and Dahl and Gouveia [12], which
give a complete linear description when the number of hops is not
larger than three, and propose classes of facet-defining in equal-
ities for the general case.
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In this paper, we present three mathematical programming
formulations for the MCFDH: the classical arc-based and path-
based formulations, as well as the hop-indexed model. Different
relaxations of these formulations are studied: Lagrangean relaxa-
tions, linear programming (LP) relaxations, and partial relaxations
of the integrality constraints. We first focus on the hop-indexed
model and study two Lagrangean relaxations, one obtained by
relaxing the capacity constraints and the other by relaxing the
flow conservation constraints. The first Lagrangean relaxation can
be decomposed into jKj hop-constrained shortest path problems.
We show that the hop-indexed formulation for that problem has
the integrality property, which implies that its associated Lagran-
gean dual has the same value as the LP relaxation value of the hop-
indexed model. The second Lagrangean relaxation can be decom-
posed into jEj 0–1 knapsack problems, which do not have the
integrality property. Thus, the value of the Lagrangean dual
associated with this relaxation is greater than, or equal to, the LP
relaxation value (this is a major difference with the bifurcated
case, where a similar Lagrangean relaxation provides the same
bound as the LP relaxation). A theoretical comparison of the LP
relaxations of the formulations is then performed, showing that
the path-based formulation and the hop-indexed formulation have
the same LP relaxation value, which is not worse (and typically
better) than the LP relaxation of the arc-based formulation. We
also compare these relaxations with those obtained by relaxing
the integrality of either the design variables or the flow variables.

The paper is organized as follows. Mathematical programming
formulations of the problem are presented in Section 2. In Section
3, we present the Lagrangean relaxations and compare them to the
LP relaxations and to the partial relaxations of the integrality
constraints. Computational results are presented and analyzed in
Section 4. Section 5 concludes the paper.

2. Problem formulations

This section presents three mathematical programming for-
mulations for the MCFDH, namely, the classical arc-based and
path-based models, as well as the hop-indexed formulation.

2.1. Classical arc-based formulation

This formulation is obtained by adding the hop constraints to
the classical arc-based formulation of the multicommodity capa-
citated fixed-charge network design problem. It uses binary
variables xe

k taking value 1 if the path of commodity k goes
through arc e, and 0 otherwise, as well as binary variables ye
taking value 1 if arc e carries flow for at least one commodity, and
0, otherwise. Given vAV , we denote by ωþ ðvÞ the set of outgoing
arcs from v and by ω� ðvÞ the set of incoming arcs to v.

ðCÞ min ∑
kAK

∑
eAE

dkckex
k
eþ ∑

eAE
f eye

∑
eAωþ ðvÞ

xke� ∑
eAω� ðvÞ

xke ¼
1; v¼ sk

�1; v¼ tk

0; vAV\fsk; tkg
; kAK

8><
>: ð1Þ

∑
kAK

dkxkerueye; eAE ð2Þ

xkerye; eAE; kAK ð3Þ

∑
eAE

xker lk; kAK ð4Þ

xkeAf0;1g; eAE; kAK ð5Þ

yeAf0;1g; eAE: ð6Þ
Constraints (1) are the flow conservation constraints, while (2)

are the capacity constraints. Constraints (3) are redundant strong
linking inequalities, which significantly improve the LP relaxation
of the model. Inequalities (4) represent the hop constraints, which
are valid because the flows are nonbifurcated.

2.2. Path-based formulation

For every kAK , let Pk be the set of paths from sk to tk whose
length is less than or equal to lk. The formulation uses binary
variables ye as in the classical arc-based model, as well as binary
variables xp taking value 1 if pAPk is used to satisfy the demand
for commodity k, and 0 otherwise. Given a path p, we define
aep ¼ 1 if arc e belongs to path p, and 0 otherwise. The cost per unit
of flow on path pAPk is then cp ¼∑eAEaepcke .

ðPÞ min ∑
kAK

∑
pAPk

dkcpxpþ ∑
eAE

f eye

∑
pAPk

xp ¼ 1; kAK ð7Þ

∑
kAK

∑
pAPk

aepd
kxprueye; eAE ð8Þ

∑
pAPk

aepxprye; eAE; kAK ð9Þ

xpAf0;1g; pAPk; kAK ð10Þ

yeAf0;1g; eAE: ð11Þ
Constraints (7) ensure that a single path is selected for each

commodity. Capacity and strong linking constraints are repre-
sented by (8) and (9), respectively. Finally, as a feasible path pAPk

has a length smaller than or equal to lk, the hop constraints are
satisfied by any solution to this formulation.

2.3. Hop-indexed formulation

For every commodity k, every arc e and every possible position
q with 1rqr lk, we define variable xeq

k equal to 1 if arc e appears
in position q in the path from sk to tk and 0, otherwise.

ðIÞ min ∑
kAK

∑
eAE

∑
lk

q ¼ 1
dkckex

k
eqþ ∑

eAE
f eye

∑
eAωþ ðvÞ

∑
lk

q ¼ 1
xkeq� ∑

eAω� ðvÞ
∑
lk

q ¼ 1
xkeq ¼

1; v¼ sk

�1; v¼ tk
; kAK

(
ð12Þ

∑
eAωþ ðvÞ

xkeq� ∑
eAω� ðvÞ

xkeq�1 ¼ 0; kAK; vAV\fsk; tkg; q¼ 2;…; lk

ð13Þ

∑
kAK

∑
lk

q ¼ 1
dkxkeqrueye; eAE ð14Þ

∑
lk

q ¼ 1
xkeqrye; eAE; kAK ð15Þ

xkeqAf0;1g; kAK ; eAE; q¼ 1;…; lk ð16Þ

yeAf0;1g; eAE: ð17Þ
Constraints (14) and (15) are capacity and strong linking

constraints, respectively. Constraints (12) and (13) are the flow
conservation constraints at the origin/destination nodes and at the
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