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a b s t r a c t

In this paper, we address the problem of determining the optimal fleet size for three vehicle routing
problems, i.e., multi-depot VRP, periodic VRP and multi-depot periodic VRP. In each of these problems,
we consider three kinds of constraints that are often found in reality, i.e., vehicle capacity, route duration
and budget constraints. To tackle the problems, we propose a new Modular Heuristic Algorithm (MHA)
whose exploration and exploitation strategies enable the algorithm to produce promising results.
Extensive computational experiments show that MHA performs impressively well, in terms of solution
quality and computational time, for the three problem classes.

& 2014 Published by Elsevier Ltd.

1. Introduction

In the classical vehicle routing problem (VRP), a homogeneous
fleet of vehicles services a set of customers from a single distribu-
tion depot or terminal. Each vehicle has a fixed capacity that
cannot be exceeded and each customer has a known demand that
must be fully satisfied. Each customer must be serviced by exactly
one visit of a single vehicle and each vehicle must depart from the
depot and return to the depot [1].

Several variations and specializations of the VRP, ranging from the
Capacitated VRP (CVRP) to more complex problems including various
realistic attributes and constraints, have been extensively studied in
the past five decades. However, the literature underlines that there
still exist many VRP variants that have not received adequate
attention despite their important relevance to many applications.

Among such VRP variants, the Multi-Depot Periodic VRP
(MDPVRP) is the one which has not been studied too much,
relative to the other existing variants, despite the fact that it
reflects many real-life applications (e.g., food collection and dis-
tribution [2], maintenance operation [3], and raw material supply
[4]). In this paper, we contribute toward addressing this challenge
by studying a variant of the MDPVRP, which we refer to as the
fleet-size Multi-Depot Periodic VRP (fs-MDPVRP), and two of its

special cases, the fleet-size Periodic VRP (fs-PVRP) and the fleet-
size Multi-Depot VRP (fs-MDVRP).

The fs-MDPVRP studied in this paper, contrary to the classical
MDPVRP in which the goal is often to minimize the total travel
distance (cost), seeks to determine the optimal number of vehicles
needed for delivery operations over a given planning horizon.
However, the fs-MDPVRP shares the network structure and several
characteristics with the classical MDPVRP. More precisely, in this VRP,
it is assumed that there exists a finite number of depots where
vehicles are located. Each vehicle performs only one route per period
and each vehicle route must start and finish at the same depot. Each
customer may require to be visited on different periods during the
planning horizon and these visits may only occur in one of a given
number of allowable visit-period combinations. In this problem, as
mentioned, the goal is to determine the optimal fleet size where
three practical constraints, i.e., vehicle capacity, maximum route
duration and budget constraints, should be satisfied. A fs-MDPVRP
incorporating such characteristics reduces to a fs-PVRP or a fs-
MDVRP if the number of depots or periods is set to 1.

To the best of our knowledge, there is no significant contribution
in the literature to address the above VRPs. In this paper, to tackle
each of the considered problems, we propose a heuristic solution
method that builds a solution at each iteration using a procedure that
has three phases, each focusing on one of the decisions to be made
(the selection of periods when each customer will be served, the
assignment of customers to depots, and the design of routes). The
proposed heuristic algorithm incorporates different exploration and
exploitation strategies to produce good results, in terms of solution
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quality and computational efficiency. The proposed heuristic solution
method is numerically shown to be efficient to address a wide
variety of test problems for the three problem classes.

The remainder of this paper is organized as follows: Section 2
gives the problem statement. In Section 3, the literature survey
relevant to the topic of this study is presented. Different aspects
of the proposed heuristic algorithm are described in Section 4.
The experimental results are given in Section 5. Finally, Section 6
provides conclusions and the evaluation of the work.

2. Problem statement and modeling

In this section, we formally state each of the problem classes,
introducing the notations used throughout this paper.

fs-MDVRP: Consider an undirected graph GðV ; EÞ. The node set V is
the union of two subsets V ¼ VC [ VD, where VC ¼ fC1;…;CNg
represents the customers and VD ¼ fD1;…;DMg includes the depots.
With each node iAVC is associated a deterministic demand qi. The
edge set E contains an edge for each pair of customers and for each
depot-customer combination. There are no edges between depots.
With each edge (vi; vjÞAE is associated a travel distance dij [5].

fs-PVRP: In the fs-PVRP, the undirected graph GðV ; EÞ is mod-
ified by fixing the value of M to one and by introducing a planning
horizon of T periods. In such a graph, each customer i is
characterized by a service frequency fi, stating how often within
these T periods the customer must be visited and a list Li of
possible visit-period combinations [6].

fs-MDPVRP: Finally, the fs-MDPVRP combines the two above
problem settings, asking for the selection of a depot and a visit
pattern for each customer, with services in different periods to the
same customer being required to originate at the same depot [6].

In each problem class, the goal is to minimize the maximum
number of vehicles used over the planning horizon. By considering
such an objective function, we actually address the strategic version of
the problem in which we assume that vehicles are either bought or
rented over a long period of time by the company facing the problem.

To model the above problems, we consider the three following
restrictions which reflect important requirements that are often
found in real-life applications:

1. The vehicle capacity constraint: This constraint states that the
total demand of the customers on any route should not exceed
the vehicle capacity Q.

2. The route duration constraint: This constraint ensures that the
total duration of a route does not exceed a preset value D.

3. The budget constraint: In many logistical systems, one is usually
faced with budgetary constraints that come from the fact that a
limited investment budget is available for a certain area or a certain
period of time. Budget considerations are almost always ignored
when dealing with VRPs. In this paper, we consider such a
budgetary restriction which we refer to as the Travel-Distance
Budget (TDB) constraint. The TDB constraint reflects many real-life
cases (for example, garbage collection and milk distribution
systems) in which, due to limited financial resources to completely
cover system's operating costs (e.g., high fuel price and vehicle
depreciation costs), vehicles cannot be practically allowed to travel
more than a prespecified distance. In this study, the TDB constraint
is defined using two different models, each realizing an important
managerial challenge in real-life distribution and logistical systems.
In the first model (R1), we set a bound on the total distance that
vehicles are permitted to travel over the planning horizon. On the
other hand, the second model (R2) aims to reflect the situations in
which, due to geographical and operational constraints, the total
distance traveled by vehicles assigned to a depot cannot exceed an
imposed limit in each period.

Depending on how we model the TDB constraint, each of the
above problem classes can be expressed by one of the following
mathematical programming models:

ðR1Þmin K ð1Þ
subject to

Fðx;KÞrb ð2Þ

τrϵ ð3Þ
where K is the maximum required number of vehicles (fleet size)
needed over the planning horizon. More precisely, K is defined as
the sum of the vehicles needed at each depot. Constraint (2)
corresponds to the vehicle-capacity and route-duration restric-
tions described above. Constraint (3) imposes that the total
traveled distance (τ) is limited by a positive value ϵ:

ðR2Þmin K ð4Þ
subject to

Fðx;KÞrb ð5Þ

τtjrϵtj 8 tAT ; 8 jAD; ð6Þ
where τtj is the total distance traveled by the vehicles assigned to
depot j in period t and ϵtj is a positive upper bound which is set on
τtj.

Ref. [5] showed that the formulation of a generalized PVRP
includes the MDVRP as a special case by associating a different
period to each depot, such that the ith customer has a frequency
fi¼1 and can be visited in any period. Ref. [6] extended this result
by proving that a MDPVRP with T periods and D depots can be
transformed into a generalized PVRP by associating a period to
each (period, depot) pair, such that the ith customer, having a list
Li of patterns, is visited fi times over the planning horizon using
one of the D� L patterns. We rely on these two transformations in
the development of the proposed modular heuristic algorithm.

3. Literature review

In this section, we focus on reviewing papers formerly pub-
lished in the literature to address different settings of the MDPVRP
and its two special cases, i.e., the PVRP and the MDVRP. The goal of
this review is first to present the most recently proposed heuristic
and meta-heuristic algorithms for these VRPs, and to highlight
that there is no significant contribution dealing with the problem
settings considered in this paper.

To the best of our knowledge, all the MDVRPs and PVRPs
studied in the literature consider the total travel distance (cost) as
the main goal, regardless of constraint types that they deal with.
The majority of solution methods, put forward to address these
problems, are divided into (1) classical heuristics which range
from simple construction and improvement procedures [7–11] to
more structured algorithms as iterative heuristics [12–14] and
multi-phase solution methods [15–17], and (2) meta-heuristics
which clearly outperform the classical heuristics by benefiting of
better exploitation and exploration strategies. In a general point of
view, these methods are grouped into tabu search algorithms
[18,5], variable neighbourhood search [19,20], large-scale neigh-
bourhood search algorithm [21], and evolutionary meta-heuristics
as genetic algorithm [22,6], ant colony optimization [23], and
scatter search [4].

Similar to the above problem settings, all the MDPVRPs existing in
the literature address the problem of minimizing the total travel
distance (cost). Solution methods, targeting these MDPVRPs, are
divided into two main groups: (1) classical heuristics, which often
address the problem in a sequential manner, and (2) meta-heuristics
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