
Constraint-handling through multi-objective optimization:
The hydrophobic-polar model for protein structure prediction

Mario Garza-Fabre n, Eduardo Rodriguez-Tello, Gregorio Toscano-Pulido
Information Technology Laboratory, CINVESTAV-Tamaulipas, Parque Científico y Tecnológico TECNOTAM, Km. 5.5 carretera Cd. Victoria-Soto La Marina,
Cd. Victoria, Tamaulipas 87130, Mexico

a r t i c l e i n f o

Available online 7 August 2014

Keywords:
Constraint-handling
Evolutionary multi-objective optimization
Fitness landscape analysis
Search bias
Protein structure prediction
Hydrophobic-polar model

a b s t r a c t

In the multi-objective approach to constraint-handling, a constrained problem is transformed into an
unconstrained one by defining additional optimization criteria to account for the problem constraints. In
this paper, this approach is explored in the context of the hydrophobic-polar model, a simplified yet
challenging representation of the protein structure prediction problem. Although focused on such a
particular case of study, this research work is intended to contribute to the general understanding of the
multi-objective constraint-handling strategy. First, a detailed analysis was conducted to investigate
the extent to which this strategy impacts on the characteristics of the fitness landscape. As a result, it
was found that an important fraction of the infeasibility translates into neutrality. This neutrality defines
potentially shorter paths to move through the landscape, which can also be exploited to escape
from local optima. By studying different mechanisms, the second part of this work highlights the
relevance of introducing a proper search bias when handling constraints by multi-objective optimiza-
tion. Finally, the suitability of the multi-objective approach was further evaluated in terms of its ability to
effectively guide the search process. This strategy significantly improved the performance of the
considered search algorithms when compared with respect to commonly adopted techniques from
the literature.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary computation methods and other metaheuristic
algorithms have been successfully used to solve complex optimi-
zation problems which arise in a diversity of scientific and
engineering applications. Often, however, optimization involves
not only to reach the best value for a given objective function
(or set of objective functions), but also to satisfy a certain set of
predefined requirements called constraints. Therefore, additional
mechanisms need to be implemented within metaheuristic algo-
rithms in order to search effectively through this kind of con-
strained solution spaces.

The hydrophobic-polar (HP) model [1,2] is an abstract for-
mulation of the protein structure prediction (PSP) problem,
where hydrophobicity is assumed to be the main stabilizing
force in the protein folding process. Under this model, PSP is
defined as the problem of finding a self-avoiding embedding of

the protein chain on a given lattice, such that the interaction
among hydrophobic amino acids is maximized. From the
computational point of view, the HP model entails a challen-
ging problem in combinatorial optimization [3,4]. One of the
main sources of difficulty in this problem lies in the fact that,
using the existing problem representations, a significant por-
tion of the solution space encodes infeasible (non-self-avoid-
ing) protein structures. Hence, it is important to devise effective
mechanisms for handling the constraints that this problem
presents. Two main research directions have been adopted to
cope with this issue. On the one hand, the search can be
confined to the space of only feasible, self-avoiding protein
conformations. On the other hand, infeasible protein conforma-
tions can also be taken into consideration, which has been
achieved in the literature by implementing a penalty strategy.
From the literature, however, it is not possible to identify a clear
consensus on which of the two directions, i.e., to avoid or to
consider infeasible conformations, could lead to the develop-
ment of more efficient metaheuristics for solving this problem
[5–9].

Premised upon the belief that infeasible conformations can
provide valuable information for guiding the search process, this
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research work inquires into the use of multi-objective optimiza-
tion as an alternative constraint-handling strategy for the HP
model. Particularly, constraints in the HP model are treated as a
supplementary optimization criterion, leading to an unconstrained
multi-objective problem.1 Using such an alternative formulation of
the HP model, infeasible solutions can become incomparable with
respect to feasible ones, having thus better opportunities for
participating throughout the search process. In contrast to the
penalty strategy, which represents one of the most widely used
techniques in the constraint-handling literature, in essence the
multi-objective (MO) method does not require the fine-tuning of
the penalty parameters2; in the penalty strategy, finding the right
balance between objective function and penalty values has been
regarded to be a difficult optimization problem itself [10,11]. The
use of multi-objective optimization for handling constraints is not
a novel idea; recent reviews on this topic can be found in [11,12].
Nevertheless, it was not until recently that the preliminary results
of this research reported for the first time, to the best of the
authors' knowledge, the application of the MO constraint-handling
strategy to the particular HP model of the PSP problem [13].

Building further on this research, the primary aim of this study
is to contribute to the general understanding of the functioning of
the MO constraint-handling technique. First, a detailed analysis
is conducted in order to investigate the potential effects of the
problem transformation from the perspective of the fitness land-
scape. More specifically, it is evaluated how the use of the MO
problem formulation impacts on an important property of the
fitness landscape: neutrality. It has been argued that the MO
approach to constraint-handling could be rather ineffective if a
search bias towards the feasible region is not introduced [14].
Therefore, the second part of this document concerns the study of
different mechanisms which can be employed for providing the
MO strategy with such a search bias. The last part of this research
work extends the comparative analysis reported in [13], where the
MO approach is evaluated with respect to commonly adopted
techniques from the specialized literature. While the preliminary
results presented in [13] assumed a fixed biasing scheme for the
MO method and focused only on the performance of a population-
based algorithm, the different biasing mechanisms analyzed in the
second part of this study, as well as both single-solution-based and
population-based algorithms, have been included in the present
study. Likewise, only 15 test instances for the two-dimensional HP
model (based on the square lattice) were used in [13]. In contrast,
the present study covers also the three-dimensional case (based
on the cubic lattice) and a total of 30 test cases have been
considered.

The remainder of this document is organized as follows.
Section 2 provides background concepts and sets the notation
used in this study. Section 3 reviews related work on constraint-
handling methods for the HP model as well as on the topic of
single-objective to multi-objective transformations. The studied
MO constraint-handling approach is described in Section 4.
Section 5 presents the analysis with regard to the fitness landscape
transformation. The search bias issue is addressed in Section 6. The
comparative study which focuses on search performance is cov-
ered in Section 7. Finally, Section 8 discusses the main findings and
presents the conclusions of this study. Appendices at the end
of this document contain supplementary information with regard
to implementation details of the considered search algorithms,
performance measures, test instances, the methodology followed

for the statistical significance analyses, and the utilized experi-
mental platform.

2. Background concepts and notation

2.1. Single-objective and multi-objective optimization

Without loss of generality, a single-objective optimization pro-
blem can be formally stated as follows:

Minimize f ðxÞ;
subject to xAXF ; ð1Þ
where x is a solution vector; XF denotes the feasible set, i.e., the set
of all feasible solution vectors in the search space X , XF⊊X ; and
f : X-R is the objective function to be optimized. The aim is thus
to find the feasible solution(s) yielding the optimum value for the
objective function; that is, to find xnAXF such that f ðxnÞ ¼
minff ðxÞjxAXF g.

Similarly, a multi-objective optimization problem can be formally
defined as follows:

Minimize fðxÞ ¼ ½f 1ðxÞ; f 2ðxÞ;…; f kðxÞ�T ;
subject to xAXF ; ð2Þ
where fðxÞ is the objective vector and f i : X-R is the ith objective
function, iAf1;2;…; kg. Rather than searching for a single optimal
solution, the task in multi-objective optimization is to identify a
set of trade-offs among the conflicting objectives. More formally,
the goal is to find a set of Pareto-optimal solutions Pn, such that
Pn ¼ fxnAXF j∄xAXF : x!xng. The symbol “!” denotes the
Pareto-dominance relation [15]:

x!x03 8 iAf1;…; kg : f iðxÞr f iðx0Þ4
( jAf1;…; kg : f jðxÞo f jðx0Þ: ð3Þ

If x!x0, then x is said to dominate x0. Otherwise, x0 is said to be
nondominated with respect to x, denoted by x⊀x0. The image of Pn

in the objective space is the so-called Pareto-optimal front, usually
also referred to as the trade-off surface.

2.2. Fitness landscapes and neutrality

The notion of a fitness landscape, first introduced by Wright
[16], has been found to be useful in understanding the most
essential characteristics of certain optimization problems, or
problem classes. By analyzing the fitness landscape, it is possible
to gain further insight into problem difficulty as a means of
explaining, or even predicting, the performance of search algo-
rithms. Fitness landscape analysis is expected to provide impor-
tant clues for guiding the development of more competitive search
mechanisms, which are able to deal with (or to take advantage of)
the particular characteristics of the given optimization task. Some
fundamental definitions on this topic, which are relevant accord-
ing to the scope of this study, are presented below. For a more
comprehensive literature review on fitness landscapes analysis the
reader can be referred to [17–21].

A fitness landscape can be generally defined in terms of a triplet
ðX ;N ; ξÞ. The first element, X , represents the set of all potential
solutions to the problem, i.e., the search space. The notion
of connectedness among solutions in X is introduced by the so-
called neighborhood structure, N : X-2X , a function which maps
each possible solution xAX to a set of solutions N ðxÞDX .
Hence, N ðxÞ is referred to as the neighborhood of x and each
x0AN ðxÞ is called a neighbor of x. Finally, ξ denotes the evalua-
tion scheme, consisting of (i) a measure (or set of measures) to
serve as an indicator of the quality of the different solution
candidates; and (ii) a mechanism to impose an ordering relation

1 The process of restating a single-objective problem as a multi-objective one is
usually referred to as multi-objectivization; refer to Section 3.2.

2 However, the MO strategy may require additional parameters or the combi-
nation with other mechanisms for biasing purposes.
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