
Efficient implementations of construction heuristics for the rectilinear
block packing problem

Y. Hu a,n, H. Hashimoto a, S. Imahori b, M. Yagiura a

a Department of Computer Science and Mathematical Informatics, Graduate School of Information Science, Nagoya University, Furocho, Chikusa,
Nagoya 464-8601, Japan
b Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan

a r t i c l e i n f o

Available online 18 July 2014

Keywords:
Strip packing
Rectilinear blocks
Construction heuristics
Efficient implementation

a b s t r a c t

The rectilinear block packing problem is a problem of packing a set of rectilinear blocks into a larger
rectangular container, where a rectilinear block is a polygonal block whose interior angle is either 901 or
2701. There exist many applications of this problem, such as VLSI design, timber/glass cutting, and
newspaper layout. In this paper, we design efficient implementations of two construction heuristics for
rectilinear block packing. The proposed algorithms are tested on a series of instances, which are
generated from nine benchmark instances. The computational results show that the proposed
algorithms are especially efficient for large instances with repeated shapes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The rectilinear block packing problem involves packing a set
of arbitrarily shaped rectilinear blocks into a larger rectangular
container without overlap so as to minimize or maximize a given
objective function. A rectilinear block is a polygonal block whose
interior angle is either 901 or 2701. This problem is important for
many industrial applications, such as VLSI design, timber/glass
cutting, and newspaper layout. It is among the classical packing
problems and is known to be NP-hard [3].

The rectilinear block packing problem is a special case of the
problem of packing general polygons, called the irregular packing
problem or nesting problem, for which a series of approaches have
been developed [1,4–6,11,14,19,26]. A special case of the recti-
linear block packing problem is the rectangle packing problem.
Many efficient algorithms have been proposed to solve the
rectangle packing problem, including simulated annealing [10],
hybrid algorithm [15], and quasi-human heuristic algorithm [29].
The bottom-left algorithm [3] and the best-fit algorithm [7] are
known as the most remarkable works among existing construction
heuristics. Compared with the rectangle packing problem, the
rectilinear block packing problem is more complicated, and it is
difficult to design efficient data structures to represent the
relationships among the rectilinear blocks. Several heuristic meth-
ods have been proposed for the rectilinear block packing problem

based on different data structures to represent the relationships
among the blocks, e.g., BSG (bounded sliceline grid) [20,24],
sequence-pairs [12,13,21,30], O-tree [25], Bn-tree [28], TCG (tran-
sitive closure graph) [22], CBL (corner block list) [23], etc.

This paper proposes construction heuristics for the rectilinear
block packing problem by generalizing representative construction
heuristics for rectangle packing. It then shows how to reduce the
time complexity of these algorithms. One of the basic ideas of our
algorithms is that we regard each rectilinear block as a set of
rectangles whose relative positions are fixed. This leads to efficient
implementations of the construction heuristics, and it also allows
us to deal with the problem having noncontinuous items, each of
which consists of a set of (separate) rectilinear blocks whose
relative positions are fixed.

The main strategy of our algorithms is the bottom-left strategy,
which derives from the bottom-left algorithm for rectangle pack-
ing [3]. In this strategy, starting from an empty layout, items are
packed into the container one by one, and whenever a new item is
packed into the container, it is placed at the BL position relative to
the current layout. The BL position of a new item relative to the
current layout is defined as the leftmost location among the
lowest bottom-left stable feasible positions, where a bottom-left
stable feasible position is a location where the new item can be
placed without overlap and cannot be moved leftward or
downward.

Various algorithms are possible under the bottom-left strategy,
and if we consider two standard rules for choosing the new item
from the remaining items, the resulting algorithms become the
bottom-left algorithm and the best-fit algorithm. We explain how
we generalize these representative construction heuristics for

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.06.021
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: yannanhu@nagoya-u.jp (Y. Hu),

hasimoto@nagoya-u.jp (H. Hashimoto), imahori@na.cse.nagoya-u.ac.jp (S. Imahori),
yagiura@nagoya-u.jp (M. Yagiura).

Computers & Operations Research 53 (2015) 206–222

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.06.021
http://dx.doi.org/10.1016/j.cor.2014.06.021
http://dx.doi.org/10.1016/j.cor.2014.06.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.06.021&domain=pdf
mailto:yannanhu@nagoya-u.jp
mailto:hasimoto@nagoya-u.jp
mailto:imahori@na.cse.nagoya-u.ac.jp
mailto:yagiura@nagoya-u.jp
http://dx.doi.org/10.1016/j.cor.2014.06.021
http://dx.doi.org/10.1016/j.cor.2014.06.021


rectangle packing to solve the rectilinear block packing problem in
Section 4. Observe that, it is necessary to find a method to
calculate BL positions for implementing these algorithms. We
generalize the Find2D-BL algorithm [17], which was proposed to
calculate the BL position of a new rectangle relative to a rectan-
gular container and rectangles placed in the container, to the case
of rectilinear blocks. We also analyze the time complexity of the
bottom-left and best-fit algorithms when they are implemented
based on the generalized Find2D-BL algorithm.

We then design more efficient implementations of the bottom-
left and best-fit algorithms for the rectilinear block packing
problem in Section 5. The basic idea is to design sophisticated
data structures that keep the information dynamically so that the
BL position of each item can be found in sub-linear amortized
time. We then analyze the time complexity of the resulting
implementations of the two construction heuristics. In this paper,
the methods of processing the rectilinear block packing problem
with rotation is also proposed as the extension of our algorithms
in Section 6.

We perform a series of experiments on a set of instances that
are generated from nine benchmark instances. The computational
results are shown in Section 7. The computational results show
that the proposed algorithms are effective for large-scale instances
of the rectilinear block packing problem and are especially
efficient for those instances having many repeated shapes. Even
for instances with 10,000 distinct shapes, our algorithms run in
about one and a half hours on a PC with a 2.3 GHz Intel Core i5
processor. For instances with more than 10,000 rectilinear blocks
with up to 60 distinct shapes, the algorithms run in less than 12 s,
often obtaining layouts with occupation rate higher than 90%.

2. Problem description

A set of n items R¼ fR1;R2;…;Rng of rectilinear blocks are
given, where each rectilinear block takes a deterministic shape
and size from a set of t shapes T ¼ fT1; T2;…; Ttg. Also given is a
rectangular container C with fixed width W and unrestricted
height H. The task is to pack all the items orthogonally without
overlap into the container. We assume that the bottom left corner
of the container is located at the origin O¼ ð0;0Þwith its four sides
parallel to the x- or y-axis. The objective is to minimize height H of
the container that is necessary to pack all the given items. Note
that the minimization of height H is equivalent to the maximiza-
tion of the occupation rate defined by ∑n

i ¼ 1AðRiÞ=WH, where AðRiÞ
denotes the area of a rectilinear shape Ri. This type of problem is
often called the strip packing problem (e.g., the rectangular strip
packing problem for the rectangular case and the irregular strip
packing problem for the case of general polygons), and according
to the improved typology of Wäscher et al. [27], strip packing
problems are categorized into the two-dimensional open dimen-
sion problem (2D ODP) with a single variable dimension. Fig. 1
shows an example of the rectilinear block packing problem. The
layout on the right is an example packing layout after packing all
the rectilinear blocks into the container given on the left of the
figure. The number of rectilinear blocks n is 7, and that of shapes t
is 5. The task is to pack these seven items into the rectangular
container so as to minimize the height of the container.

We define the bounding box of an item Ri as the smallest
rectangle that encloses Ri, and its width and height are denoted as
wi and hi. We call the area of the bounding box, wihi, the bounding
area of Ri. The location of an item Ri is described by the coordinate
ðxi; yiÞ of its reference point, where the reference point is the
bottom-left corner of its bounding box. For convenience, each
rectilinear block and the container C are regarded as the set of
points (including both interior and boundary points) whose

coordinates are determined from the origin O¼ ð0;0Þ. Then, a
rectilinear block Ri placed at vi ¼ ðxi; yiÞ is represented as the
Minkowski sum Ri � vi ¼ fpþvi ∣ pARig. For a rectilinear block Ri,
let intðRiÞ be the interior of Ri. Then the rectilinear block packing
problem is formally described as follows:

minimize H

subject to 0rxirW�wi; 1r irn ð1Þ

0ryirH�hi; 1r irn ð2Þ

intðRi � viÞ \ ðRj � vjÞ ¼∅; ia j: ð3Þ

The constraints (1) and (2) require that all rectilinear blocks be
packed inside the container. The constraint (3) ensures that there
exists no item overlapping with others.

Two cases of this problem are often considered in the litera-
ture: (1) all the items are not allowed to be rotated and (2) all the
items can be rotated 901, 1801 or 2701. However, the case without
rotations is assumed in this paper unless otherwise stated, because
it is easy to apply the results in this paper to the case with
rotations as discussed in Section 6.

3. Basic knowledge

In this section, we explain some important techniques and
definitions used in our algorithms. As a crucial technique for the
packing problem, the concept of no-fit polygon is explained in
Section 3.1. The definition of BL positions in general and the
Find2D-BL algorithm [17] to calculate the BL positions for rectan-
gles are introduced in Sections 3.2 and 3.3. Two construction
heuristics for the rectangle packing problem are then introduced
in Sections 3.4 and 3.5. We first explain the bottom-left algorithm,
which is one of the simplest forms among the algorithms based on
the bottom-left strategy. Then we explain the best-fit algorithm,
which is slightly more complicated than the bottom-left algorithm
but it is known to be more effective.

3.1. No-fit polygon

The no-fit polygon (NFP) is a geometric technique to check
overlaps of two polygons in a two-dimensional space. This concept
was introduced by Art [2] in 1960s, who used the term “shape
envelope” to describe the positions where two polygons can be
placed without intersection. It is defined for an ordered pair of two
polygons Pi and Pj, where the position of polygon Pi is fixed and
polygon Pj can be moved. The NFP of Pj relative to Pi, NFPðPi; PjÞ
denotes the set of positions of polygon Pj having an intersection
with polygon Pi, which is formally defined as follows:

NFPðPi; PjÞ ¼ intðPiÞ � ð� intðPjÞÞ
¼ fu�w ∣ uA intðPiÞ;wA intðPjÞg: ð4Þ

NFPðPi; PjÞ is illustrated through the example in Fig. 2.
When the two polygons are clear from the context, we may

simply use NFP instead of NFPðPi; PjÞ. Assume that ∂NFPðPi; PjÞ
denotes the boundary of NFPðPi; PjÞ, and clðNFPðPi; PjÞÞ denotes
the closure of NFPðPi; PjÞ. The no-fit polygon has the following
important properties, where vi and vj are the positions of Pi and Pj:

� Pj � vj overlaps with Pi � vi if and only if vjANFPðPi; PjÞ � vi.� Pj � vj touches Pi � vi if and only if vjA ∂NFPðPi; PjÞ � vi.� Pi � vi and Pj � vj are separated if and only if
vj =2clðNFPðPi; PjÞÞ � vi.

Y. Hu et al. / Computers & Operations Research 53 (2015) 206–222 207



Download English Version:

https://daneshyari.com/en/article/475131

Download Persian Version:

https://daneshyari.com/article/475131

Daneshyari.com

https://daneshyari.com/en/article/475131
https://daneshyari.com/article/475131
https://daneshyari.com

