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a b s t r a c t

We conduct exact analysis of serial production lines with deterministic service durations and various
classes of random state-dependent setups between customers. Our focus is on assessing the production
rate, or just-in-time (JIT) throughput. We demonstrate that such systems can be modeled as a Markov
chain and consider various types of setups inspired by clustered photolithography tools in semicon-
ductor manufacturing. We deduce when exact closed form expressions for the production rate are
possible and when a numeric solution to the Markov chain balance equations are required. As these
systems have shown promise for modeling process bound clustered photolithography tools, we study
their accuracy versus detailed simulation for predicting the tool throughput. Various practical features
such as the capacity of a pre-scan buffer and batch customers (to model wafer lots) are investigated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Serial production lines, also known as flow lines, with random
behavior can serve as prototypical models for a host of manufactur-
ing systems including production and assembly lines; cf., [1–4] or,
more recently [5–11]. As such, they have a rich history of research
focus and have been applied in many contexts. However, excepting
limited classes of systems, exact results do not exist and approxima-
tions and simulation methods are typically employed. We endeavor
to obtain exact results for a class of such systems with practical
application potential in semiconductor manufacturing.

Our performance metric of choice is the maximum production rate
or just-in-time (JIT) throughput. The JIT throughput is the long term
average rate at which customers exit the system when the input is
never starved. That is, it is the throughput when customers arrive just-
in-time to the flow line. This is equivalent to the maximum rate at
which the system can produce customers. In [12], it was shown that
the JIT throughput for two stage serial production lines can be
expressed as 1=E½maxfS1; S2g�, where E is the expected value and Si
denotes the random service duration for stage i. Based on this result, in
[12–14], explicit expressions for the JIT throughput under exponential,
Erlang and uniform service distributions were obtained. For the three
stage case, it was demonstrated in [15] that the JIT throughput is

1=E½maxfS1; S2; S3g�, where Si is the random service time for stage i.
A variety of papers pursued exact performance results based on this
fact under different service time distributions; cf., [15–20]. Beyond
these cases, exact analysis does not seem possible for stages with
overlapping random service durations; cf., [1] or [4]. Refer also to [21].

Much recent work has focused on approximations based on
aggregation [22–26] or decomposition methods [27–31]. These
approximations can possess astonishing accuracy and have been
used in many practical contexts; cf., [7]. However, like simulation
(which can be computationally intensive relative to other methods),
they do not as readily provide the same qualitative insights which
may be possible via exact results. In addition, these approximations
have not explicitly incorporated issues such as setups.

In clustered photolithography tools in semiconductor wafer
manufacturing, various types of setups may be required. These
setups have a large influence on the JIT throughput of system.
While serial production lines have been used to study practical
semiconductor manufacturing [32–35], no closed form expres-
sions considering setups have been obtained. Our efforts are
motivated by this lack of results. We focus on obtaining exact
results and closed form expressions where possible. To this end,
we will restrict attention to serial production lines with determi-
nistic service times. While the JIT throughput of such a determi-
nistic system is trivially the inverse of the longest process time,
allowing random setups dramatically complicates analysis. Yet,
setups are of practical importance and essential for models of
certain manufacturing environments.
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For certain classes of randomly occurring setups inspired by
clustered photolithography tools (CPTs), we will demonstrate that
the maximum production rate can be exactly calculated. This is
possible by exploiting the fact that, for JIT customer arrivals, the
delay customers experience in the system can be modeled as a
Markov chain. In certain cases, explicit expressions for the system
throughput can be obtained. In others, the throughput can be
calculated by solving for the equilibrium probabilities of the
Markov chain. With these results in hand, we endeavor to apply
them to models of CPTs. Such tools have a structure that is
particularly amenable to our approach. CPTs are essential compo-
nents of semiconductor wafer fabrication and can be modeled as a
serial production line when in the process bound region; cf.,
[32–35]. We incorporate practical features such as a wafer buffer
before the scanner of the CPT and batch arrivals. Generally, the
scanner has the longest process time in a CPT and there is a buffer
to ensure its throughput. We compare the throughput obtained via
our models with detailed simulations; they are acceptable. Despite
limitations associated with the model assumptions, we hope that
the results may prove useful in practical contexts where analytic
throughput expressions are of value.

Though we describe the systems under consideration in detail
in the next section, we require a few ideas now. A serial produc-
tion line consists of M stages, labeled m1;…;mM . Each stage
consists of a single server or machine, which provides service.
The process time for a customer at stage mi is deterministic with
duration τi. There are no buffers between stages, excepting the
arrival buffer before the first stage (it has infinite capacity). This
restriction is easy to relax and we will do so in the next section.
There is a bottleneck stage; it is the first stage mB whose τB is
greater than or equal to all other process times.

Aside from any additional time that may be required for a
setup, the service time for every customer in stage mi is τi. Recent
theoretical results [36] suggest that it may be possible to relax this
assumption and allow service times to depend on the customer.
However, significant work will be required to allow this. We hope
that the methods developed here will then be applicable in that
context.

The classes of setups we consider are as follows. These classes
are those for which exact analysis is possible and/or are relevant to
modeling setups in CPTs.

� Type I setup: Bottleneck only. A customer may require the
bottleneck stage alone to conduct a setup once it arrives to
mB. The process time at the bottleneck for this customer will
appear greater than τB.� Type II setup: A sequence of stages m1;…;mSII . Before entering
the system, a customer may require that all stages prior to and
including some distinguished stage mSII be vacant before a
setup of those stages commences. Once the setup of those
stages is complete, the customer may enter m1 and start its
service. We will assume SIIrB.

� Type III setup: Full-flush. In a full-flush setup, all stages should
be vacant before the setup begins. After the setup is complete,
the customer may enter the system.

� Type IV setup: A sequence of stages mSIV ;…;mM . Before entering
some distinguished stage mSIV , a customer may require that all
stages mSIV ;…;mM conduct a setup. They must be vacant of
customers prior to the commencement of the setup. Once
complete, the customer may enter mSIV and proceed with
service.

Naturally, a customer may require no setup from any stage. A Type
I, II or III setup will be required for a customer with fixed
probability independent of all other customers. In the sequel, we
will describe how these various setups occur in CPTs. There may

be other classes of setups that are amenable to analysis that we did
not identify.

Multiple classes of setups may be required for a single custo-
mer. For example, some customer may demand a Type II setup
from the stages m1;…;mSII , SIIoB, followed by a Type I setup at
the bottleneck. Note that a Type III setup includes both Type II and
Type IV setups. As such, we need not consider them together. We
consider

� Type V setup: Both Type I and Type II.
� Type VI setup: Both Type I and Type III.

We study Type I, II and III setups separately. A Type IV setup
that is not subsumed by another class of setup cannot be
modeled by our methods. Detailed simulation will be required.
We address Type V and VI setups separately. As mentioned, our
focus is on the JIT throughput, the maximum production rate, of
such a system; call it α. The contributions of the work are as
follows.

� For Type I and III setups and Type II setups (with SII ¼ B or
B�1), we determine α explicitly (Propositions 1–4).

� For Type II setups, with certain conditions on SII to be detailed
later, we show that the system can be modeled as a Markov
chain (Proposition 6), identify its recurrent states (Lemma 4)
and determine when the equilibrium probabilities, and thus α,
can be obtained explicitly (Propositions 7 and 8). Otherwise, we
give the balance equations that will allow the calculation of α
(Proposition 9).

� For Type V and Type VI (with SII ¼ B or B�1) setups, we obtain
α explicitly (Propositions 10–12).

� Incorporate practical features relevant to CPTs (Section 6).
� Compare the results against those from detailed simulation of a

process bound CPT with wafer handling robots (Section 7).

The results are summarized for ease of reference in Table 1.
The remainder of the paper is organized as follows. In Section 2,

we describe our systems of interest. We also introduce relevant
known results. In Section 3, we derive the JIT throughput under
Type I and Type II setups. In Section 4, we focus on Type II setups
with a certain condition on SII. We identify cases where the
throughput can be explicitly obtained. In Section 5, we consider
combination setup Types V and VI. We apply the results to serial
production line models of CPTs in Section 6. In Section 7, a detailed
simulation of a process bound CPT is compared with our models.
The simulation includes wafer transport robots and is based on
industrial CPT data from the literature. Concluding remarks are
provided in Section 8.

Hereafter, we use the term flow line. It is synonymous with
serial production line. An early abbreviated version of a subset of
the work reported here appeared in conference form in [37].

2. Preliminaries

We first describe deterministic flow lines and relevant known
results. Type I, II and III setups are also detailed.

2.1. Deterministic flow lines

A flow line is composed of a series of stages from which
customers receive service in sequence. In each stage, there is a
single server or machine which provides service. There is an
infinite capacity buffer before the first stage. A finite capacity
buffer may be provided for each stage after the first. As detailed in
[38], the finite capacity intermediate buffers can be modeled as a
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