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a b s t r a c t

In semiconductor manufacturing, wafer quality control strongly relies on product monitoring and physical
metrology. However, the involved metrology operations, generally performed by means of scanning electron
microscopes, are particularly cost-intensive and time-consuming. For this reason, in common practice a
small subset only of a productive lot is measured at the metrology stations and it is devoted to represent the
entire lot. Virtual Metrology (VM) methodologies are used to obtain reliable predictions of metrology results
at process time, without actually performing physical measurements. This goal is usually achieved by means
of statistical models and by linking process data and context information to target measurements. Since
semiconductor manufacturing processes involve a high number of sequential operations, it is reasonable to
assume that the quality features of a givenwafer (such as layer thickness and critical dimensions) depend on
the whole processing and not on the last step before measurement only. In this paper, we investigate the
possibilities to enhance VM prediction accuracy by exploiting the knowledge collected in the previous
process steps. We present two different schemes of multi-step VM, along with dataset preparation
indications. Special emphasis is placed on regression techniques capable of handling high-dimensional
input spaces. The proposed multi-step approaches are tested on industrial production data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, Virtual Metrology (VM) techniques have received
growing interest from semiconductor manufacturers, thanks to
the prospective measurement cost reduction and improvements
in production quality (by means of control schemes exploiting VM
information) [1].

The goal of a VM module is that of defining the relationships
between process data (input) and metrology data (output). Given
the cost of metrology operations and the increasing availability of
recorded data in modern equipment, reliable VM predictions are
used in place of real metrology measurements [2,3]. The inputs of
the VM algorithms are cost-free data like sensor data, logistic and
recipe information, while the predicted output is generally critical
dimensions (like layer thickness for Chemical Vapor Deposition,
Etch depth of Etch Rate for the Etching) upon which the goodness
of the performed process can be assessed. In this perspective, VM

tools are seen as information providers, able to yield probabilistic
information at process time on wafer quality features.

Thanks to the diffusion in the pasts years of VM modules and
the improvement of their prediction accuracy, nowadays VM
predictions are not only used to monitor process quality and to
decrease the number of physical measures performed, but they are
also exploited by intelligent tools like controllers [4,5], dispatching
and sampling decision systems [6] that can take advantage of VM
estimations to improve the overall process quality.

VM problems, and more in general, modeling of semiconductor
manufacturing process quality features, pose a number of chal-
lenges, among which the most prominent are the following:

� High-dimensionality: The number of potential input process para-
meters is usually large, given the high number of process variables
and even higher number of collected data/statistics and production
information. This issue may lead to ill-conditioned problems and
data over-fitting [7–9].

� Data fragmentation: The typical semiconductor manufacturing
production is highly fragmented. Hundreds of different pro-
ducts are processed with different machine settings (recipes) on
several tools that work in parallel, each one with different
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working stations (chambers) (see Fig. 1 for an example). A VM
system is required to model the entire production, but sepa-
rately modeling each logistic path (group of wafers with the
same combination of recipe, tool and chamber) is unfeasible
given the large amount of possible combinations versus the
historical data available.

� Multi-processes influence: The information regarding the out-
come of a process is related to both the process itself and
previous steps along the production line that may contain
information regarding the current state of the wafer or may
physically affect the outcome of the wafer feature in exam. For
instance, one physical reason of the superimposition of effects
of multiple processes on wafer features is the fact that wafer
fabrication is based on multiple layers build one on top of the
previous, with a possible concatenation of effects due to layer
surface disparities [10].

The first two issues are addressed in Section 2, where a brief
review of modeling techniques for VM is given. The main focus of
the paper is however on the last issue, namely, the influence of
multiple processes on the wafer features predicted by the VM
module (the VM targets), that has been only partly explored in the
VM literature [11,12]. Classical VM modules typically consider the
modeling of a single process only, that is, the last one before the
physical metrology step, without taking into account the influence
of the previous processes on the line may have on the physical/
electrical parameters that the VM module aims to predict. If data
regarding the previous processes can be retrieved and included in
the input set, it is reasonable to expect that the VM systems
prediction accuracy can be enhanced.

The resulting data collection problem is a difficult one. In fact,
from the modeling point of view, the collected multi-step data more
markedly present the aforementioned issues of high-dimensionality
and fragmentation. The increase in dimensionality is clearly related
to the inclusion of a larger number of parameters into the dataset,
that are related to the previous processing steps. To illustrate
the issue of data fragmentation, consider the example of Fig. 2
that regards three of the most important classes of semiconductor
processes, namely, Chemical Vapor Deposition (CVD), Lithography
(Litho), and Etching (Etch). The diagram represents a possible

process flow in the case of 11 different work-stations for the
aforementioned processes. Since different process tools can perform
the same process step for a specific wafer, the number of possible
paths grows exponentially with the number of steps. As a conse-
quence, a homogeneous dataset referred to a specific path would
comprise an insufficient number of observations.

In this paper we present a novel framework to address multi-
step VM situations similar to the one shown in Fig. 2. The
proposed approach relies on regularized machine learning meth-
odologies to deal with high-dimensionality, and on a multilevel
transformation of the input space to deal with data fragmentation.
The goal is that of estimating quality indicators of wafers that have
undergone several processes, by making use of data related to a
subset of those processes that may have influenced the VM target
(based on data availability and a priori physical knowledge).

The paper is organized as follows:

� Section 2.2 is devoted to review regularized machine learning
techniques with focus on Regularization Methods.

� In Section 3 a brief description of Multi-Level techniques is
provided and the proposed Multi-Step approaches are presented,
in terms both of dataset preparation and model assumptions.

� In Section 4 a user case is presented and the proposed
methodologies are validated exploiting a industrial manufac-
turing dataset.

Finally, in Section 5, final remarks and comments are provided.
This paper extends the results presented in [13].

2. Modeling techniques for VM

In this section, the basic features of the modeling techniques
employed for VM technologies are reviewed.

2.1. Literature review

Several features are required for a VM system to be successfully
employed in a production environment (i.e. scalability to new
production settings, fast computation, interpretability). Among
them, prediction accuracy is the first and most important one,
and consequently, the issue of modeling for VM has been at the
heart of the debate in the scientific community in the past years.

#0 (Equipment 1)

#1 (Process 1) #2 (Process 2)

#3 (A1) #4 (A2) #5 (B1) #6 (B2) #7 (C1) #8 (C2)

Fig. 1. Tree representation of a CVD (Chemical Vapor Deposition) tool with three
chambers (A, B, C) with two subchambers each (1 and 2), involved in two processes
(Process1 and Process 2). Therefore, for the processed wafers, twelve distinct
logistic configurations (i.e., paths) are possible.

Fig. 2. Example of process flow in semiconductor manufacturing: the black dashed
lines represent wafer dispatching events, while the solid blue lines represent
information flows. The Virtual Metrology (VM) block collects process data (x)
for several consecutive steps, and metrology data (y) for the latest step.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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