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a b s t r a c t

We consider a class of location–allocation problems with immobile servers, stochastic demand and
congestion that arises in several planning contexts: location of emergency medical clinics; preventive
healthcare centers; refuse collection and disposal centers; stores and service centers; bank branches and
automated banking machines; internet mirror sites; web service providers (servers); and distribution
centers in supply chains. The problem seeks to simultaneously locate service facilities, equip them with
appropriate capacities, and allocate user demand to these facilities such that the total cost, which
consists of the fixed cost of opening facilities with sufficient capacities, the access cost of users' travel
to facilities, and the queuing delay cost, is minimized. Under Poisson user demand arrivals and general
service time distributions, the problem is set up as a network of independent M/G/1 queues, whose
locations, capacities and service zones need to be determined. The resulting mathematical model is a
non-linear integer program. Using simple transformation and piecewise linear approximation, the model
is linearized and solved to ϵ-optimality using a constraint generation method. Computational results are
presented for instances up to 400 users, 25 potential service facilities, and 5 capacity levels with different
coefficients of variation of service times and average queueing delay costs per customer. The results
indicate that the proposed solution method is efficient in solving a wide range of problem instances.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Problems arising in several planning contexts require deciding:
(i) the location of service facilities and their capacities; and
(ii) allocation of service zones to the located service facilities.
Examples include location of emergency service facilities such as
medical clinics and preventive health care facilities [25,26,27];
stores and service centers; bank branches and automated banking
machines [1,11,23]; automobile emission testing stations [11]; web
service providers' facilities [3]; proxy/mirror servers in communica-
tion networks [24] and distribution centers in supply chains [17,22].
All the above examples are characterized by servers (medical clinics,
bank branches, distribution centers, etc.) that are immobile in that
the customers need to travel to the service facilities to avail of their
services, as opposed to the servers traveling (mobile servers) to the
customers' site in response to calls for their services. Such problems
are generally also characterized by random nature of service calls
(demand arrivals) and their service requirements (service times).

These problems are commonly known in the literature as facility
location problems with immobile servers, stochastic demand and
congestion [8]. They are also termed as service system design
problems with stochastic demand and congestion [4–6,13]. Litera-
ture review for this class of problems is provided by Berman and
Krass [8] and Boffey et al. [10].

For facility location problems with stochastic demand and con-
gestion, the following two factors are important: (i) the costs of
providing service; and (ii) the quality of service, with an objective
generally requiring a balance between the two. The costs of
providing service are related to the fixed cost of opening/operating
the service facilities and the cost of accessing these facilities by the
users. The service quality, on the other hand, is often measured in
terms of: (i) the average number of users waiting for service;
(ii) average waiting time per user; or (iii) the probability of serving
a user within a time limit [13]. Balance between service costs and
service quality is commonly achieved in the literature using a
combination of the total cost of opening and accessing facilities
and the cost associated with waiting customers, which is minimized
in the objective function [4,5,11,13,23]. Others in the literature
minimize the cost of providing service subject to a minimum
threshold on the service quality, where the service quality may be
defined in one of the ways described above [18,19,21].
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In this paper, we use the former of the two approaches
described above, i.e., we consider minimization of the total cost,
which includes the cost of opening and accessing facilities and the
cost associated with waiting customers. It is worth noting that due
to the complexity of the underlying problem, most papers in this
category make assumptions such as (i) either the number or
capacity of the facilities (or both) is fixed; (ii) the demand arrival
process is Poisson; and (iii) the service times follow an exponential
distribution (see [1,4,13,19,23] and references therein). Despite
these simplifying assumptions, the techniques proposed to date to
solve the problem, with the exception of Elhedhli [13], are either
approximate or heuristic based.

The contribution of this paper is twofold. First, by assuming a
general distribution for the service times at facilities, as opposed to
exponential distribution, we present a more generalized model of
the problem than available in the extant literature. More specifi-
cally, our proposed model seeks to determine the minimum cost
system-optimal configuration (location of service facilities and
their capacity levels as well as the allocation of service zones to
these facilities) of a service system under Poisson arrivals and
general service time distribution, where the total cost consists of
the costs of opening and accessing service facilities and the cost
associated with waiting customers. As discussed above, the pro-
blem, even with the simplifying assumption of exponential service
time distribution, is too difficult to solve using exact methods. The
proposed model, with general service time distribution, is even more
challenging to solve. So, our second contribution lies in the exact
(ϵ-optimal) solution method that we propose to solve our model.
Our proposed solution method is based on a simple transformation
and piecewise linearization of our non-linear integer programming
(IP) model, which is solved to optimality (or ϵ-optimality) using a
constraint generation algorithm.

The remainder of the paper is organized as follows. In Section 2,
we describe the problem setting, followed by its non-linear IP
model. Section 3 describes the transformation and the piecewise
linearization approach for the non-linear IP model. To solve the
linearized model, we present a constraint generation based solution
approach in Section 4. Computational results are reported in Section
5. Section 6 concludes with some directions for future research.

2. Problem formulation

Consider a set of user nodes, each indexed by iA I whose
demand for service occurs continuously over time according to
an independent Poisson process with rate λi. We consider a
directed choice environment, where users are assigned to facilities,
each indexed by jA J, by a central decision maker. This is applic-
able, for example, in the case of a “virtual call center” consisting of
geographically dispersed telephone call centers, routing of calls to
which is centrally determined (see [11], and references therein).
The directed choice model is also applicable in the case of medical
clinics and preventive health care facilities; automobile emission
testing stations; and distribution centers in supply chains, if users'
choice can be influenced through imposition of tolls or differential
service fees. Later, we show how our model can be adapted to the
user choice environment where the choice of service facility is not
dictated or influenced by the central authority but exercised solely
by the users. Recent studies of models with directed choice
settings include Aboolian et al. [2] whereas models with user
choice settings can be found in Baron et al. [7,27], and references
therein.

We assume that users from any node are entirely assigned to a
single service facility, where each facility operates with an infinite
buffer to accommodate users waiting for service. If xij is a binary
variable that equals 1 if the demand for service from user node i is

satisfied by facility j, and 0 otherwise, then the aggregate demand
arrival rate at facility j, as a result of the superposition of Poisson
processes, also follows a Poisson process withmean Λj ¼∑iA Iλixij [15].

There are two approaches to model the capacity of a service
facility [2,7]. One is to model the given service facility as a single
server with flexible service capacity μ, which can be adjusted
either continuously or in discrete steps. The second approach is to
assume multiple parallel servers, each with a given single capacity
level μ. In this case, the decision variable is the appropriate
number of servers to be installed at the given service facility. In
the case of call centers, automated banking machines , automobile
emission testing stations, or distribution centers, where adding
capacity would imply adding a call center employee, a banking
machine, a testing station, or a loading/unloading dock respec-
tively, the multiple server model is more appropriate. However, in
cases where it is not clear what a “server” represents (e.g.
hospitals or emergency medical clinics), and the capacity can be
increased in a variety of ways (by improving patient flow or
technology; adding nurses, doctors, support staff or examination
rooms, etc.), single server model would be suitable. In this paper,
we adopt the former approach, and model each facility as a single
server with multiple capacity levels, fromwhich one capacity level
is to be selected, if the facility is opened. We take this approach
primarily for tractability of the resulting model. However, a single
server model may still be a good approximation of a multi-sever
facility if the utilization of the service facility is reasonably high. This
is because under reasonably high system utilization, a system with s
parallel servers, each with capacity μ, is known to perform similar to
a single server with capacity sμ.

For each service facility, we allow the option of selecting one of the
several capacity levels μjk; kAK with fixed cost fjk (amortized over the
planning period). Let yjk be a binary variable that equals 1 if facility at
site j is open and equipped with a capacity level kAK , 0 otherwise.
Further, assume that the service times at any facility j are independent
and identically distributed with a mean 1=μjk and variance s2

jk if it is
equipped with a capacity level k. Each facility j is thus modeled as an
M=G=1 queue with a service rate μj ¼∑kAKμjkyjk and variance in
service times given by s2

j ¼∑kAKs2
jkyjk. Thus, the service system

design problem is modeled as a network of independent M/G/1
queues.

Under steady state conditions ðΛj=μjo1Þ, first-come-first-serve
(FCFS) queuing discipline, and infinite buffers to accommodate
users waiting for service, the expected waiting time (including the
time spent in service) of users at facility j is given, by the
Pollaczek–Khintchine formula [15], as

E½wj� ¼
1þCv2j

2

 !
τjρj
1�ρj

þτj ¼
1þCv2j

2

 !
Λj

μjðμj�ΛjÞ
þ 1
μj

ð1Þ

where τj ¼ 1=μj is the average service time at facility j, ρj ¼ Λj=μj is
the average utilization of facility j, and Cvj ¼ sjμj is the coefficient
of variation of service times at facility j. E½wj� can be written in
terms of location and allocation variables (yjk and xij) as

E½wjðx; yÞ� ¼
1þ∑kAKCv

2
jkyjk

� �
∑iA Iλixij

2∑kAKμjkyjk ∑kAKμjkyjk�∑iA Iλixij
� �þ 1

∑kAKμjkyjk
ð2Þ

The expected number of users in service or waiting for service
at facility j is given, using Little's law, as ΛjE½wj�. If d denotes
the average waiting time cost per customer (henceforth called
unit queuing delay cost), then the total delay/congestion cost in the
network can be expressed as d∑jA JΛjE½wjðx; yÞ� ¼ d∑jA J∑iA Iλixij
E½wjðx; yÞ�. We assume there is a variable access cost cij of providing
service to users at node i from facility at site j. The problem is to
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