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a b s t r a c t

This paper introduces the Dynamic Multiperiod Vehicle Routing Problem with Probabilistic Information,
an extension of the Dynamic Multiperiod Vehicle Routing Problem in which, at each time period, the set
of customers requiring a service in later time periods is unknown, but its probability distribution is
available. Requests for service must be satisfied within a given time window that comprises several time
periods of the planning horizon. We propose an adaptive service policy that aims at estimating the best
time period to serve each request within its associated time window in order to reduce distribution costs.
The effectiveness of this policy is compared with that of two alternative basic policies through a series of
computational experiments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to model and solve the Dynamic
Multiperiod Vehicle Routing Problem with Probabilistic Informa-
tion (DVRPP). In this capacitated routing problem, calls for service
arrive throughout a discrete time horizon and must be fulfilled
within a time window that comprises several time periods. In
addition to known information about customers (request time
windows and distances), it is assumed that at each time period,
probabilistic information regarding calls for service in future time
periods is available. At each time period, two decisions must be
made: (i) the choice of the subset of pending service requests to
satisfy and (ii) the design of the vehicle routes.

The DVRPP belongs to the classes of both multiperiod and
stochastic vehicle routing problems. After the pioneering work of
Wilson and Colvin [20], a great deal of research has focused on
dynamic vehicle routing problems. A recent review of applications
and solution methods is given in [17]. Several researchers have
investigated problems in which information on travel times,
customer demands, customer locations or server availabilities
evolves over the planning horizon. Nevertheless, most available
studies tackle situations where requests for service arrive dyna-
mically, as it is the case of this work. In addition, several authors

have considered different degrees of dynamism for the frequency
at which new data becomes available and have investigated the
impact of new data on the solution [13].

In the DVRPP service routes are designed at each time period,
while most previous work on dynamic vehicle routing considers
situations in which predefined routes are dynamically modified to
account for new information. For example, Bertsimas and Van Ryzin
[7] study a routing problem in which vehicle routes are adapted to
include customers as their requests for service arrive. Customers are
uniformly located in the plane and service requests arrive according
to a Poisson process. They identify alternative optimal policies
depending on whether the traffic is heavy or light. This work was
extended by Papastavrou [16] who presented a new policy with
good performance, independently of traffic density. Similarly, Ghiani
et al. [10] designed routes that visit all the known customers and in
which it is easy to insert late-call customers. In the same spirit,
Moretti Branchini et al. [15] presented and compared some adaptive
and distributed algorithms for routing a group of vehicles through a
set of customers having stochastic locations and requirements.

Few works have proposed models in which the set of pending
customers in a given time period will depend both on the vehicle
routes performed in earlier time periods and on new service
requests. An example is the Dynamic Multiperiod Vehicle Routing
Problem (DMVRP) introduced in [1] and later generalized in [19].
Angelelli et al. [1] consider a multiperiod vehicle routing problem
in which, at each time period, some customers make a service
request that has to be fulfilled during one of the next two time
periods. Once the set of customers to serve at a given time
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period is decided, these are served through optimal routes by
uncapacitated vehicles. The aim of the problem is to minimize the
total travel cost over the planning horizon. In Wen et al. [19] have
extended this problem in two ways. On the one hand, vehicle
capacities are taken into account. On the other hand, the max-
imum number of days before fulfilling a request may differ among
customers. Moreover, two additional objective functions are con-
sidered, which are related to the workload balance over the
planning horizon and to the number of pending requests within
their feasible time interval. The authors propose a rolling-horizon
procedure in which the service day chosen for each pending
customer depends on its distance to other customers with com-
mon feasible service days. In both papers, at each time period,
decisions have to be made using only information on service
requests that have already been placed.

Even in the context of dynamic problems where solutions are
gradually adapted to evolving data, probabilistic knowledge of
future events can be useful to reduce costs or to improve the
solutions with respect to other criteria [12]. Following this idea, in
this paper we extend the DMVRP by considering that probabilistic
information on future service requests is available at each time
period and for each customer without a pending order. That is, at
any time period, we know the probability of demand for subse-
quent time periods for each non-pending customer. Our aim is to
use this information to improve the distribution costs. Hence, at
each time period a set of routes are designed to serve a subset of
the pending customers, while service to the remaining pending
customers is postponed to later time periods. Broadly speaking,
the DMVRP is the deterministic counterpart of the DVRPP.

Two basic policies can be applied in this context: to serve each
pending customer at the beginning of its time window (Early
Policy, EP), or to serve each pending customer at the end of its
time window (Delayed Policy, DP). There are, however, two main
reasons for deviating from such policies. First, the basic policies
can lead to infeasible vehicle routing subproblems at some time
periods, since vehicles are capacitated and the fleet size is limited.
Second, distribution cost savings would be obtained if neighboring
customers were scheduled at the same time period. From this
point of view, at any time period, the attractiveness of pending
customers whose time window is not yet closing will depend on
their location with respect to other customers who have to be
served urgently, and on the likelihood of receiving requests of
neighboring customers in the near future.

According to this idea, the adaptive policy proposed in this
paper is based on defining at each time period a vehicle routing
subproblem in which not all the pending customers need to be
served. Instead, profits are assigned to pending customers, and a
Prize Collecting VRP (PCVRP) is then solved to simultaneously
define the set of pending customers who will actually be served, as
well as the vehicle routes. These profits, which use a compatibility
index based on the geometric distribution of customers, capture
the willingness to serve each pending customer and depend on the
urgency to serve it (measured by the remaining time within its
time window) as well as on the probability that other neighboring
customers will require service during its time window.

The remainder of this paper is organized as follows. A formal
description of the DVRPP is presented in the next section, together
with the notation. In Section 3 we describe the proposed solution
algorithm and the subproblems needing to be solved at each time
period. As mentioned in [6], due to the dynamic nature of the
problem, a solution to the DVRPP cannot be a static output but is
instead a solution strategy. For this reason, to assess the effectiveness
of the proposed solution method, its output is compared with the
solutions resulting from applying the two alternative basic policies.
The results of these comparisons are presented and analyzed in
Section 4. Conclusions are summarized in the last section.

2. Problem definition and notation

We consider an undirected graph G¼ ðV ; EÞ, where V¼{0,. …, n}
is the vertex set and E¼ fði; jÞ : i; jAV ; io jg is the edge set. A depot
is located at vertex 0 and the remaining vertices are customers.
The distance between two vertices i; jAV is denoted by cij. An
homogeneous fleet of vehicles of capacity Q is located at vertex 0.
These vehicles are indexed in a set K. We denote by qi the demand
of customer iAV\f0g, which we assume to be fixed and known in
advance. Furthermore, there is a time horizon T, finite or infinite,
and service requests of the customers must be satisfied within
fixed time windows made up of several consecutive time periods.
At each time period tAT , the customers are partitioned into the
following two sets:

� Vt is the set of pending customers at t, i.e. those with an active
request of service. The service request of customer iAVt , must
be satisfied within its time window ½li;ui�. Since t is the first
time period when the request of pending customer iAVt can be
satisfied, we assume that li ¼ t.

� V \Vt is the set of customers with no pending service request
at t.

At time period tAT , for each ℓZt, we denote by ptiℓ the
probability that the next service time window of customer i
contains time period ℓ. Therefore, for iAVt , ptiℓ ¼ 1, if ℓA ½li;ui�,
and ptiℓ ¼ 0 otherwise. For each customer iAV\Vt we assume that
the probabilities ptiℓ are known.

The DVRPP is to find a set of minimum cost routes for each time
period in the planning horizon such that:

� All routes start and end at the depot.
� The service requests of all visited customers are satisfied within

their time window.
� At each time period, the demand of a customer is either served

fully or not at all.
� The vehicle capacities are not exceeded.

Note that although vehicle fixed costs are not explicitly
considered here, they can be taken into account by appropriately
increasing the costs of the arcs incident to the depot.

The DVRPP is a dynamic problem since at each time period the
available information on future service requests is only probabil-
istic, and the set of customers who need to be considered at each
time period depends on the routes already built in previous time
periods, and also on the service requests that have arrived after
these routes have been fixed.

Observe that when all information concerning service requests
is known a priori, the resulting problem becomes a special case of
the periodic vehicle routing problem [9] with frequency one.
When no information is available about future calls for service,
the problem becomes dynamic, and it is no longer possible to
identify an optimal static solution; what is optimal for a set of time
periods can become suboptimal if an extra time period is added.
Moreover, if the data concerning future calls are not fully available,
but are only known in a probabilistic sense, the problem then also
becomes stochastic.

3. Algorithm

In order to develop a solution policy for the DVRPP, it is
necessary to define a rule for determining, at each time period
tAT , (i) the set of pending customers to serve at time period t and,
(ii) the associated vehicle routes. As mentioned in Section 1, two
elementary policies can be considered: EP and DP. Whereas both

M. Albareda-Sambola et al. / Computers & Operations Research 48 (2014) 31–3932



Download English Version:

https://daneshyari.com/en/article/475149

Download Persian Version:

https://daneshyari.com/article/475149

Daneshyari.com

https://daneshyari.com/en/article/475149
https://daneshyari.com/article/475149
https://daneshyari.com

