Contents lists available at ScienceDirect

MCAT

journal homepage: www.elsevier.com/locate/mcat

Ionic liquid-assisted catalytic oxidation of anethole by copper- and iron-based metal-organic frameworks

Hongling Qin^{a,b,1}, Xiaoying Jiang^{a,1}, Hongmei Huang^b, Wenzhu Liu^a, Jiahui Li^{a,b}, Yi Xiao^{a,b,*}, Liqiu Mao^{a,b}, Zaihui Fu^{a,b}, Ningya Yu^{a,b}, Dulin Yin^{a,b,*}

^a National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, PR China

^b Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China

ARTICLE INFO

Article history: Received 10 April 2017 Received in revised form 14 July 2017 Accepted 18 July 2017

Keywords: Cu- and Fe-MOFs Anethole Ionic liquid H2O2 TBHP

ABSTRACT

A synergistic strategy involving ionic liquid (IL) and Cu- or Fe-based metal-organic frameworks (MOFs) has been developed for the selective oxidation of anethole with H_2O_2 and tert-butyl hydroperoxide (TBHP). Under the optimum conditions, 74.8%–91.5% conversion of substrate and 92.1%–94.6% selectivity for anisaldehyde were obtained over Cu-BTC-1 (BTC: benzene-1,3,5-tricarboxylate) with the aid of 5.0 mol% [C12mim]Cl using aqueous H2O2 as the oxygen source. In contrast, Fe(PMA) (PMA: pyromellitate) nanorods provided up to 84.0% yield of 4-methoxyphenylacetone in the presence of 5.0 mol% [C4mim][Cys] by using TBHP oxidant. Notably, amphiphilic [C12mim]Cl and multifunctional [C4mim][Cys] are favorable for the improved reactivity and good reusability of Cu-BTC-1 or Fe(PMA) owing to the synergistic effects of Cu-BTC-1/[C12mim]Cl or Fe(PMA)/[C4mim][Cys] nano/submicro-structures fabricated *in-situ*. In particular, nanoscale stacking of $[C_4 mim][Cys]$ on **Fe(PMA)** can be directly demonstrated by TEM. In-depth understanding of the reaction mechanism can be achieved using XRD, FT-IR, DRUV-vis and UV-vis techniques.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Transformation of biomass and derivatives thereof into chemicals has been paid more attention due to the decline in available fossil resources [1,2]. Anethole is the major component of essential oils extracted from star anise, anise seed or sweet fennel and thus is an alluring feedstock for the production of valuable compounds [2-4]. Among them, anisaldehyde and 4methoxyphenylacetone are important flavors and intermediates for synthesizing fragrances, pharmaceuticals and agrochemicals [3-7]. Efficient conversion of anethole into anisaldehyde or 4methoxyphenylacetone has been investigated via vanadium and copper complexes employing H_2O_2 as the green oxidant [3,4,8]. Additionally, anethole cleavage to anisaldehyde was also explored by photochemical and enzyme-mediated methods [9,10]. However,

E-mail addresses: xiaoyi@hunnu.edu.cn (Y. Xiao), dulinyin@126.com (D. Yin).

¹ These authors contributed equally.

http://dx.doi.org/10.1016/i.mcat.2017.07.014 2468-8231/© 2017 Elsevier B.V. All rights reserved. the development of novel heterogeneous catalyst for convenient and highly selective transformation of anethole with H₂O₂ or TBHP is still quite desirable [11].

MOFs have emerged as a promising platform for heterogeneous catalysis owing to ultrahigh porosity, tunable pore size or morphology, and facile modification [12,13]. Since the pioneer work performed by Chui et al. using $[Cu_3(BTC)_2(H_2O)_3]_n$ [14], Cu-MOFs have attracted increasing attention and numerous Cucontaining MOFs, e.g., microporous [Cu₂^{II,II}(OOCC₆H₁₀COO)₂]·H₂O [15], crystalline or amorphized Cu₃(BTC)₂ [16], porphyrin@MOF type catalyst CuTNPP@MOF [17], $[Cu(bpy)(H_2O)_2(BF_4)_2(bpy)]$ [18], mixed-node Ag-Cu-BTC [19] and $[{Cu(L1)(DMF)} DMF^{\bullet}H_2O]_n$ derived from pyridyl-based isophthalic acid [20], have been examined in heterogeneous oxidations. Also of considerable interest, iron is intriguing for the design of novel Fe-MOF catalysts because of its advantages such as cheapness, nontoxicity and potential to readily form reactive species (e.g., HO[•]) [21]. Recently, a variety of Fe-containing MOFs have been reported for heterogeneous catalytic transformations [22-26]. Nonetheless, new approach for anethole oxidation over Cu- or Fe-MOF is relatively unexplored.

The design of novel and simple MOF-based catalytic system with higher stability and activity remains a challenge [27,28]. Mean-

^{*} Corresponding authors at: National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, PR China

Fig. 1. TEM images of Cu-MOF samples: (A) Cu-BTC-1, (B) Cu-BTC-2, (C) Cu(tpa) and (D) Cu(im)₂.

while, IL generally employed as medium or catalyst [29,30], has demonstrated its potential in improving CuCl₂-mediated oxidation process when using 1-butyl-3-methylimidazolium chloride as the co-ligand [31]. Moreover, polyethylene-supported Fe/ionic liguid complex exhibited more excellent reactivity and recoverability than former systems [29]. Nanoscale metal-organic frameworks (NMOFs) represent a unique new family of hybrid nanomaterials [32]. Particularly, the packing of NMOFs particles can result in meso- and macropores [33], which obviously differs from the reported routes to construct mesopores using rigid slim organic linkers or large building blocks [34,35]. Furthermore, modification of the NMOF surface would significantly improve the stability and other properties of NMOFs under complex conditions [32]. Herein, we first reported the selective oxidation of anethole to anisaldehyde or 4-methoxyphenylacetone over heterogeneous Cu- and Fe-MOFs using IL as the additive. Notably, Cu-MOF catalysts are formed in the nano-submicroscale range through conventional routes, whereas Fe-MOFs are nanoscale materials obtained by a dual-ligand strategy, which could induce significant differences in MOFs morphology, structure and performance. Inspiringly, Cu-BTC-1 and Fe(PMA)-based nano/submicro-sized synergistic systems were endowed with significantly enhanced activity and recyclability in the presence of amphiphilic [C12 mim]Cl or [C₄mim][Cys] derived from natural amino acid, respectively, as supported by TEM, XRD, FT-IR, DRUV-vis and UV-vis analyses.

2. Experimental

2.1. General

1-Butyl-3-methylimidazolium		hydrogen	sulphate
([C ₄ mim][HSO ₄]),	1-butyl-3-methylimidazolium		carbon-

ate $([C_4 mim]_2 CO_3)$ and amino acid ionic liquids (AAILs, i.e. [C₄mim][Cys], [C₄mim][Ala] and [C₄mim][Pro]), were synthesized according to the literature [36-38]. Anethole (>99.5%, Guangxi Wanshan Spice Co., Ltd.), [C12mim]Cl (99%, Shanghai Cheng Jie Chemical Co., Ltd.) and other chemicals were used as purchased. FT-IR spectra of catalysts were measured using an Avatar-370 spectrometer. Thermogravimetric (TG) analysis was carried out on a Netzch Sta 449c instrument (Germany). BET surface area and other textural properties were determined by N2 adsorption-desorption method at 77 K on a Micromeritics TriStar 3000 apparatus. Diffuse reflectance UV-vis (DRUV-vis) and UV-vis spectra were acquired with a Hitachi UV-3310 or a Shimadzu UV-2450 spectrophotometer, respectively. ¹H NMR spectrum was recorded using a Bruker 500 MHz NMR spectrometer. Transmission electron microscopy (TEM) image was taken on a JEM-2010 instrument (JEOL, Japan) operated at 200 kV. XRD data were collected by a Y-2000 diffractometer (Cu K α radiation, λ = 0.154178 nm) in the 2 θ range from 2.5° to 50°. ICP-AES analysis was carried out by inductively coupled plasma atomic emission spectroscopy (ICP-AES, PS-6, Baird, USA). Fluorescence spectra were obtained using a Hitachi F-7000 fluorometer. Gas chromatography was performed on Agilent 6890 equipped with a DB-5 ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \mu \text{m}$) column. Mass spectra were run on an America Varian Saturn 2100T GC-MS spectrometer.

2.2. Synthesis of Cu-MOFs

Cu-BTC-1, Cu-BTC-2, Cu(tpa) (**tpa**: terephthalate) and **Cu(im**)₂ (**im**: imidazolate) were prepared by literature methods [39–42]. Details about the procedures are described in the Supporting information.

Download English Version:

https://daneshyari.com/en/article/4751703

Download Persian Version:

https://daneshyari.com/article/4751703

Daneshyari.com