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In this paper we consider a combined production–transportation problem, where n jobs have to be

processed on a single machine at a production site before they are delivered to a customer. At the

production stage, for each job a release date is given; at the transportation stage, job delivery should be

completed not later than a given due date. The transportation is done by m identical vehicles with

limited capacity. It takes a constant time to deliver a batch of jobs to the customer. The objective is to

find a feasible schedule minimizing the maximum lateness.

After formulating the considered problem as a mixed integer linear program, we propose different

methods to calculate lower bounds. Then we describe a tabu search algorithm which enumerates

promising partial solutions for the production stage. Each partial solution is complemented with an

optimal transportation schedule (calculated in polynomial time) achieving a coordinated solution to the

combined production–transportation problem. Finally, we present results of computational experi-

ments on randomly generated data.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional scheduling research deals with problems of sequencing
jobs on processing machines without taking into account transporta-
tion issues. Recent trends in scheduling involve extended scheduling
models where more practical constraints are included. In particular,
in a typical supply chain system materials and resources are available
at some release dates at the manufacturer’s site; the manufacturer
should process them in accordance with technological constraints;
finally, finished goods should be delivered to a customer by given due
dates. In the context of a supply chain, scheduling of production
cannot be done in isolation from scheduling of transportation since a
coordinated solution to the integrated problem may improve the
performance of the whole supply chain.

The first stage of our model – production – deals with a single
production facility and a set of n jobs, which should be processed
one at a time. The jobs may have different processing require-
ments in terms of the production time and may be available at
different release dates. The second stage – transportation – deals
with the delivery of n finished goods to a customer using m

transportation vehicles which have the same delivery character-
istics: equal transportation times from the production site to the

customer and equal capacities, i.e. the maximum number of jobs
which can be transported by a vehicle in one batch. The objective
is to define a production and a transportation schedule so that the
jobs are delivered to the customer by their due dates. In a more
general setting, it is required to minimize the maximum lateness
among the jobs, see Section 2 for a formal definition.

The results related to the problem under consideration are
scattered among a broad range of publications on (A) production–

transportation and (B) generalized flow-shop models with the
second stage involving m identical batching machines.

(A) The literature on production–transportation is vast ranging
in multiple parameters. With several survey papers available, e.g.,
[5,8,13,26], we refer the reader to the most recent review by
Chen [6]. The results related to our study fall in the category of
‘‘batch delivery by direct shipping’’ discussed in Section 5.1
of the review. Eliminating the non-relevant models with cost
factors (for which it is usually assumed that the number of
vehicles is sufficiently large, m¼n, [11–13,25]), the models with
resource availability constraints and those with min-sum criteria,
we review here the most closely related papers [16,28] with min–
max criteria. Their main outcomes can be summarized as follows.
If all jobs are available simultaneously, then the production–
transportation problem with the makespan objective is solvable
in Oðn log nÞ time [16], while the following two generalizations
are NP-hard: the version studied in [16] with two machines at the
production site operating as a flow-shop and the version studied
in [28] with an additional transportation stage from a supplier to
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the production site which precedes the introduced production–
transportation model. No results are available for the production–
transportation model with arbitrary release dates and due dates.

(B): In the flow-shop model with two machines, each job should
be processed on the first machine and then on the second one. If the
second machine operates in a batching mode (i.e. several jobs can be
processed simultaneously) and the batch processing time is constant
independent of the jobs included in the batch, the corresponding
flow-shop model is equivalent to our production–transportation
model with one transportation vehicle. To the best of our knowledge,
the flow-shop problem with a batching machine and unequal release
dates and due dates was not addressed in the literature. The studied
models deal with the following special cases:

� If all jobs have equal release dates and equal due dates, then the
corresponding problem is solvable in Oðn log nÞ time [1]. Note
that, as discussed in part (A), an algorithm with the same
complexity is also known for the more general case with multiple
batching machines (multiple transportation vehicles) [16].
� If the jobs have arbitrary release dates but equal due dates,

then the corresponding problem is NP-hard in the strong sense
[27] and, as shown in the same paper, it can be solved by a
2-approximation algorithm. Note that the NP-hardness result
is also proved in a later paper [22], which uses the production–
transportation terminology (A); the same paper presents also a
5/3-approximation algorithm. The most recent approximation
algorithm has a worst-case ratio of 3/2 [21].

Summarizing we observe that there is a lack of research addressing
the production–transportation problem in its general setting when
the jobs have unequal release dates and unequal due dates. Also, as
stated in the review paper [6], ‘‘the majority of the existing work has
been centered on clarifying complexity of some problems, most of
which are, unfortunately, NP-hardy Therefore it is worthwhile to
design fast heuristics or exact branch-and-bound algorithms for such
problems’’. In this paper, we pursue this line of research by develop-
ing a tabu search algorithm for the general case of the production–
transportation problem. It is hard to perform a fair comparison of our
algorithm with published algorithms since they have been developed
for models which differ too much from the one we consider.
For example, the heuristics for a flow-shop model with batching
machines often deal with batches of unequal size, see, e.g.,
[17,18,20,23,24]; the production–transportation papers often consider
non-identical vehicles [29] and take into account the routing
issues [9]. Due to this reason, we also pay special attention to lower
bound calculations and estimate the quality of our tabu search
algorithm with respect to the calculated lower bound values.

The remainder of this paper is organized as follows. After
defining our problem formally and discussing known results for it
in Section 2, a mixed integer linear programming formulation is
given in Section 3. Section 4 is devoted to different lower bound
calculations. In Section 5 a tabu search algorithm is presented.
Computational results can be found in Section 6. We conclude the
paper with some remarks in Section 7.

2. Problem formulation

In this paper, we consider a combined production–transportation
problem, which can be described as follows. There are n jobs of a set
N¼ f1,2, . . . ,ng which have to be processed at a production site
before being delivered to a customer by transportation vehicles. The
corresponding stages are called production and transportation, and
the two operations of a job are called production and transportation
operations, accordingly.

At the production stage, each job jAN becomes available for
processing at its release date rj and has to be processed for pjZ0 time

units. The production site operates as a single machine, i.e. it
processes at most one job at any time. Additionally, due dates dj for
the jobs jAN are given by the customer with the meaning that job j

should be delivered not later than time dj. We assume that all input
data are integer.

After job j has finished processing at the production stage, it
becomes available for transportation to the customer. The deliv-
ery is performed by m identical vehicles with limited capacity
where any vehicle can carry no more than b jobs at any time. It
takes a constant time t to deliver a batch of jobs to the customer.
Additionally, we assume that the time for returning back from the
customer to the production site is negligible. The overall perfor-
mance of a schedule is measured in terms of the maximum
lateness Lmax :¼maxfLj9jANg, where Lj :¼ Cj�dj is the lateness of
job j and Cj denotes the time where the delivery of job j to the
customer is completed.

Another objective function equivalent to Lmax is the extended
makespan Cq

max ¼maxfCjþqjg where the jobs have tails qj instead
of due dates dj. A tail qj means that after the completion time Cj of
job j additionally qj time units are needed before the job is
finished (tails of different jobs can be executed simultaneously).
If we set qj :¼ D�dj for all jAN with a constant DZmaxjANdj, it is
easy to see that Cq

j ¼ Cjþqj ¼ Cj�djþD¼ LjþD holds. Since D is a
constant, minimizing Lmax is equivalent to minimizing Cq

max.
A feasible production–transportation schedule may be com-

pletely specified by

� a processing sequence of the jobs on the production machine
and
� a sequence of batches for the transportation stage.

From these two sequences a feasible (left-shifted) schedule, in which
every operation starts as early as possible, may be calculated as
follows. At the production stage, each job can start immediately after
it is released and the previous job is completed, i.e. the starting time
Sj

p of job j on the production machine is Sp
j ¼maxfrj,S

p
i þpig, where i

is the job directly processed before j. The completion time Cj
p of j on

the production machine is Cp
j ¼ Sp

j þpj.
For the transportation stage we have a partitioning of all jobs

into a sequence ðB1,B2, . . . ,BaÞ of batches where aAfdn=be, . . . ,ng
denotes the number of used batches and the sequence of batches
determines their starting order. Since the transportation time t is
constant and the objective function is regular, it is sufficient to
consider schedules in which the assignment of the batches to the
vehicles is done in a cyclic way such that vehicle vAf1, . . . ,mg
processes batches Bv,Bvþm,Bvþ2 m, etc. In such a schedule the
starting time SBk

of batch Bk can be determined as

SBk
¼

maxfCp
j 9jABkg, 1rkrm,

maxfmaxfCp
j 9jABkg,SBk�m

þtg, mokra:

8<
: ð1Þ

Furthermore, the completion time Cj of each job jABk is given by
Cj ¼ SBk

þt.

Example 1. Consider an instance with n¼5 jobs, m¼2 vehicles
with capacity b¼2, and delivery time t¼ 4. The job character-
istics are defined as follows:

j 1 2 3 4 5
rj 0 0 5 3 5
pj 1 2 2 1 3
dj 5 10 24 12 16

With D¼ d3 ¼ 24 we get the tails q1 ¼ 19, q2 ¼ 14, q3 ¼ 0,
q4 ¼ 12,q5 ¼ 8. Let us assume that on the production machine the
jobs are processed in the sequence (1,2,4,3,5); in the transportation
stage the batch sequence is ðf1g,f2,4g,f3g,f5gÞ. A corresponding
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