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a  b  s  t  r  a  c  t

A  complex  of  ferrous-  and hydroxide  ions  was  generated  within  a  core–shell  magnetic  nanocatalyst  of
24  ± 3 nm.  The  catalytic  activity  of  material  was  explored  in  the  synthesis  of  3,4-dihydropyrimidine-
2-(1H)-one/thione  (DHPM)  derivatives  in  neat  condition.  The  products  are  synthesized  in  high  yields
(85–98%)  in  15–20 min.  Neither  Fe-  nor  hydroxide  leaching  in  the  reaction  medium  was  detected  by  AAS
and  pH  analysis,  respectively.  The  catalyst  has  a convenient  reusability  after  seven  consecutive  reaction
cycles  giving  a cumulative  turnover  frequency  >5600  h−1.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The synthesis of DHPMs has been of considerable interests
because of their diverse range of biological properties [1–6]. Tra-
ditionally, the first choice in the preparation of DHPMs involves
the Biginelli reaction [7,8]. Diverse kinds of improvements were
reported for this reaction [9–37]. Nevertheless, there still are some
lacks such as using expensive reagents, expensive/non-recoverable
catalysts, long reaction times, requirement for strong acids as cat-
alysts, tiresome workup, laborious separation and use of organic
solvents.

Many studies have progressed on preparation and application
of immobilized catalysts on diverse solid supports [38–45]. Since
common heterogeneous catalysts suffer from the requirement for
diffusion of reagents into their bodies [46], their activities decrease
sharply. Reducing the size of particles to the nano-scale, enhances
the availability of the catalytic sites [47], thus nanocatalysts have
the aptitude to connect homogenous and heterogeneous catalysts
together [48]. Despite the appropriate effect on reactivity, reduc-
ing the size of particles undoubtedly makes the isolation of the
catalyst difficult [49–51,4]. To overcome this problem, over the
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last decade, magnetic nanoparticles have presented as an effective
troubleshooting way [52–70].

Cooperative catalysts can activate the reaction substrates in a
dual mode by exhibiting two different catalytic functions simul-
taneously. Hence, in recent years they have prevailed as the most
elegant class of artificial catalysts [71–77]. To date, there are some
examples of their applications in organic syntheses. Chae et al.
introduced a tetrametallic ruthenium-�-oxo-�-hydroxo catalyst
for the alcohol oxidation [78]. Lewis acid/Brønsted acid salicylato
titanocene in the Mannich reaction [79], cooperative effect of Pt-
Rh/Ba/Al and CuZSM-5 catalysts for NOx reduction [80], effect of Ce
and Mn  in MnCe/Al2O3 by [81], Co(II) complex incorporated into
amino-functionalized MIL-101(Cr) for cyclohexane selective oxi-
dation [82], Ni nanoparticles on basic hydrotalcite support [83],
combination of Co and W catalysis in dehydrogenation of unacti-
vated alkanes [84] as well as alloy nanocrystals on MOFs [85] are
some examples of this type of catalysts.

In continuation of our research area in the design and synthesis
of novel catalysts [86–92], we  decide to explore a novel cooperative
ferrous ion (Lewis acid)- and hydroxide (Brønsted base) functional-
ized magnetic interphase catalyst and its application in the Biginelli
reaction.
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Scheme 1. Preparation of the catalyst.

2. Experimental

2.1. The preparation of catalyst

Ferric chloride (5.0 mmol) and ferrous chloride (2.5 mmol) were
successively dissolved in de-ionized water (20 mL). The result-
ing solution was then added slowly into aqueous ammonia (25%,
40 mL)  under vigorous stirring. After addition of tetraethyl orthosil-
icate at 90 ◦C, stirring was continued overnight. The resulting silica
supported magnetite colloid was separated and washed repeat-
edly with de-ionized water and EtOH. Then, the final dark-brown
product was dried at 200 ◦C (led to 88% yield). 3-Aminopropyl
trimethoxysilane (4.5 mL)  was added to a suspension of silica sup-
ported magnetite (1 g) in dry toluene and heated to 110 ◦C for
10 h. Afterwards, the solid was collected by magnetic separation,
washed with water and DCM several times, and dried at 60 ◦C
overnight (in 92% yield). The resulting material was denoted as
Fe3O4@SiO2-APTMS. Ferrous chloride (0.5 mmol) and potassium
carbonate (2 Equiv.) was mixed in water led to the generation of
Fe(OH)2 which was added to 1 g of the prepared material in water
and refluxed overnight. After drying at 100 ◦C, Fe3O4@SiO2-APTMS-
Fe(OH)2 was obtained in about 89% yield.

2.2. Ion-exchange pH analysis of Fe3O4@SiO2-APTMS-Fe(OH)2

50 mg  of the Fe3O4@SiO2-APTMS-Fe(OH)2 was  added to a solu-
tion of NaCl (1 M,  25 mL)  with an initial pH = 6.45 and the mixture
stirred for 3 h at r.t. The pH of solution increased to 6.67. The result
confirmed that no notable leaching of hydroxide ions occurred
in reaction conditions (<10−4 mmol  per gram of the Fe3O4@SiO2-
APTMS-Fe(OH)2).

2.3. Elemental analysis of Fe3O4@SiO2-APTMS-Fe(OH)2

The elemental analysis of Fe3O4@SiO2-APTMS-Fe(OH)2 was
done using a Perkin Elmer CHN elemental analyzer. Charac-
terization showed 3.78% C, 1.12% N and 1.18% H (=0.43 mmol
Fe(OH)2 g−1). Results confirmed other data.

2.4. Typical procedure for the synthesis of DHPMs catalyzed by
Fe3O4@SiO2-APTMS-Fe(OH)2

In a reaction vessel 10 mg  of Fe3O4@SiO2-APTMS-Fe(OH)2
(equal to 0.0043 mmol  surface Fe) was added to a mixture
of ethyl acetoacetate (1 mmol), an aryl aldehyde (1 Equiv.)
and urea/thiourea (1.2 Equiv.). The reaction was progressed at
80 Equiv. −C until the completion. At the end, Fe3O4@SiO2-APTMS-
Fe(OH)2 was magnetically recovered after addition of cold EtOH.
The product was purified by re-crystallization from EtOH. The puri-

Fig. 1. X-ray diffraction patterns of Fe3O4@SiO2 (a) and Fe3O4@SiO2-APTMS-
Fe(OH)2 (b).

ties of prepared DHPMs were confirmed by comparison of their
spectroscopic data by the literatures.

3. Results and discussions

The general procedure for synthesis of Fe3O4@SiO2-APTMS-
Fe(OH)2 is represented in Scheme 1. Fe3O4@SiO2 nanoparticles
were synthesized according to the literature [93]. Then, the surfaces
of the synthesized nanoparticles were modified by the cova-
lently grafting of organic linker 3-aminopropyltrimethoxysilane
to generate Fe3O4@SiO2-APTMS. In the final step, the synthesized
interphase material was again modified via a Fe(OH)2 resulted in
the generation of Fe3O4@SiO2-APTMS-Fe(OH)2. The synthesized
materials were characterized by different techniques including
XRD, FT-IR, SEM, EDX and elemental analysis (CHN).

The crystalline structures of the as-synthesized Fe3O4@SiO2
and Fe3O4@SiO2-APTMS-Fe(OH)2 were confirmed by XRD and the
results are shown in Fig. 1(a) and (b). In Fig. 1a, diffraction peaks
at 2� = 18.5◦, 30.3◦, 35.5◦, 43.0◦, 57.2◦, 63.0◦ corresponded to the
highly crystalline cubic spinel structure of Fe3O4. The generation
of SiO2 was  proved by the band at 2� = 22◦. These results proved
that the surface of magnetite was successfully coated with the
silica shell. The XRD patterns of the Fe3O4@SiO2-APTMS-Fe(OH)2
(Fig. 1b) was similar to that of Fe3O4@SiO2 in line shape demon-
strating that no change in the crystal structure happened during
the introduction of organic functional groups.

The surface modification of the prepared materials was
also characterized by FT-IR spectroscopy. The FTIR spectra
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