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a  b  s  t r  a  c  t

This  paper  presents  a nonlinear  model  predictive  control  approach  for  the  anaerobic  digestion  process.
A  new  model  reduction  strategy  with  estimation  of  the  model  parameters  is proposed  for  the  anaerobic
digestion  process.  The  reduced  model  is  then  used  to predict  future  plant  states  in  the  nonlinear  model
predictive  control.  We  develop  a terminal  feasible  set  to constrain  terminal  states  in  the  prediction  hori-
zon, such  that the  controlled  process  beyond  the horizon  lies  within  a stable  region  and  the  predictive
controller  is  recursively  feasible.  In addition,  to make  the  predictive  controller  more  practical,  we design
a  predictive  control  algorithm  that explicitly  considers  the  influence  of  process  disturbances  and  satisfies
given  constraints.  Numerical  simulations  on  the  benchmark  model  ADM1  demonstrate  the  performance
of  the  proposed  method.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Anaerobic digestion (AD) process has been extensively stud-
ied for wastewater treatment and bio-energy production due to
its ability of transforming the organic waste or energy crops into
biogas in the absence of oxygen [1]. The anaerobic conversion of
organic matter is a complex bio-chemical process involving numer-
ous bacterial populations, which makes the process nonlinear and
uncertain, therefore, hard to predict and control. For this reason, the
design, analysis, and control of anaerobic systems have attracted a
considerable amount of attention over decades.

As a basis for designing and controlling the AD process, many
kinetic models have been developed and studied to improve the
process stability and reduce the operational cost [2–8]. Among
these models, Anaerobic Digestion Model No. 1 (ADM1) [6] is a
very general mathematical model applicable for a lot of kinetics.
It includes 19 bioconversion processes and describes the dynam-
ics of 24 model components. Due to its generality and flexibility,
ADM1 has became a common platform for anaerobic process mod-
eling and simulation. However, ADM1 describes in detail the main
dynamics involved in the AD process and may  not be appropriate for
control purposes under limited computational resources. In such
cases, a simplified model that covers main dynamical characteris-
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tics is preferred. Among many simplified models, the one proposed
by Bernard [5] (AM2) is widely used. AM2  contains two reaction
dynamics (the acidogenesis step and the methanogenesis step)
and 6 state variables (acidogenic bacteria, methanogenic bacteria,
organic substrate, volatile fatty acids, inorganic carbon, and total
alkalinity). The growth of acidogens is assumed to follow Monod
kinetics and the growth of methanogens is assumed to follow
Haldane kinetics. García-Diéguez [9] proposed another reduction
methodology for control and supervision purposes. The number of
reactions was  determined by a principal component analysis (PCA)
technique. More recently, Hassam [10] proposed a modified ver-
sion AM2HN of AM2. The modification includes relevant processes
including hydrolysis and the concomitant release of ammoniacal
nitrogen. However, the kinetic parameters in these reduced models
are actually varying drastically because of their abstraction of many
complex reaction dynamics. The difficulty in effectively determin-
ing values of these parameters hinders the use of these models
in control applications. This motivates us to improve the model-
ing strategy and develop on-line parameter estimation methods.
An improved reduced model is proposed in this paper where all
the states and many parameters can be estimated by Kalman fil-
ter on-line. The maximum substrate degradation rates are defined
as state variables to be estimated rather than the biomass concen-
trations which could not be measured. Moreover, like in ADM1,
we define the process rates as substrate degradation rates which
enables on-line estimation of kinetic parameters.
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Control is essential to achieve the required treatment effi-
ciency of AD plants and a considerable amount of effort has been
devoted to monitoring and control of the AD process in recent
years. A traditional proportional-integral (PI) feedback controller,
where the effluent chemical oxygen demand (COD) concentra-
tion and the dilution rate are taken respectively as the regulation
and the manipulation variable, is presented by Alcaraz-González
[11]. Many researchers have developed adaptive control strate-
gies to account for the nonlinearities of the AD process [12–17].
However, such strategies often require complete knowledge of the
system, which can be difficult to obtain when dealing with bio-
processes such as AD plants where the parameters of system can
change greatly over time. To overcome this problem, robust and
rule based expert approaches have been proposed [18–22]. Garcia
[23] proposed a fuzzy logic-based system for diagnosis and con-
trol of AD process where intermediate/total alkalinity ratio was
selected for organic overload identification. However, its perfor-
mance is strongly dependent on the expertise of operators and
phenomenological information, which makes it difficult to apply
to different types of wastewater.

With the development of numerical computing technology,
nonlinear model predictive control (NMPC) has become an attrac-
tive control scheme for nonlinear systems [24–26]. A few studies
can be observed in the literature where NMPC has been used to
control the AD process [27–30]. However, the structural complex-
ity and poor measurability of the AD process still present a barrier
to apply NMPC strategy for its ideal operation.

In this work we propose NMPC algorithms for the AD process
based on the reduced model whose parameters are identified on-
line. The control problems are formulated to reflex the control
objective including a requirement on the process stability. A termi-
nal feasible set is developed to constrain terminal states, such that
the controlled process beyond the prediction horizon lies within
its stable region and the predictive controller is recursively feasi-
ble. In addition, to make the predictive controller more practical, we
design an NMPC that explicitly considers the influence of process
disturbances and satisfies given constraints. Numerical simulations
on the benchmark model ADM1 demonstrate the performance of
the proposed predictive control method.

This paper is organized as follows: In Sections 2 and 3 we
describe process modeling and state estimation methods. The
design of two NMPC controllers based on the proposed reduced
model is described in Section 4. In Section 5 the effectiveness of the
proposed methods is validated by simulations.

2. Modeling the AD process

2.1. Preliminary results on AM2  model

The AM2 model [5] has been widely used for monitoring and
control purpose, due to its simplicity and capability to represent
the dynamics of various AD reactors. Assuming that the reactor is
an ideal continuous stirred tank reactor (CSTR), the mass balance for
the six state variables in the AM2  can be described by the following
differential equations:

dX1

dt
= (�1(S1) − D)X1 (1)

dX2

dt
= (�2(S2) − D)X2 (2)

dS1

dt
= D(S1,in − S1) − kS1,1�1(S1)X1 (3)

dS2

dt
= D(S2,in − S2) + kS2,1�1(S1)X1 − kS2,2�2(S2)X2 (4)

dZ

dt
= D(Zin − Z) (5)

dC

dt
= D(Cin − C) − qc + kC,1�1(S1)X1 + kC,2�2(S2)X2 (6)

qM = kch4�2(S2)X2 (7)

where X1, X2, S1, S2, Z, C denote, respectively, the concentra-
tions of acidogenic bacteria (kgCOD m−3), methanogenic bacteria
(kgCOD m−3), primary organic substrate (kgCOD m−3), volatile fatty
acids (VFA, kmol m−3), total alkalinity (kmol m−3), and total inor-
ganic carbon (kmol m−3). D is the dilution rate (d−1), qc and qM are
the molar flow rate of CO2 and CH4. kS1,1, kS2,1, kS2,2, kC,1, kC,2, kch4
are constant yield coefficients. The subscript in denotes the influ-
ent concentrations of each component. The bacterial growth rate
of the acidogenic bacteria is of the Monod type, whereas Haldanes
kinetics describes the methanogenic bacterial growth rate, which
takes into account the inhibitory effects of VFA accumulation, i.e.,

�1(S1) = �1,max

(
S1

S1 + KS1

)
(8)

�2(S2) = �2,max

(
S2

S2 + KS2 + (S2/KI2)2

)
(9)

where �1,max (d−1), �2,max (d−1), KS1(kgCOD m−3), and
KS2(kmol m−3) are the maximum bacteria growth rates,
half-saturation constants associated to S1, S2, respectively.
KI2(kmol m−3) is the inhibition constants associated to S2. While
AM2 is successful in characterizing the nonlinear dynamics of AD
processes, the changing nature of its parameters brings difficulty
with the model prediction and performance optimization in NMPC.
We  will discuss this further in the next section and propose a
simplified model more suitable for NMPC.

2.2. Model reformulation

Because a large variation of the parameters in AM2  is unavoid-
able over the process, the on-line estimation of the model
parameters, especially the kinetic parameters, is often necessary.
The inefficiency of AM2  for NMPC mainly comes from the fact that
some of its parameters are unable to be measured in a real-time
fashion. In the following, we analyze this problem and introduce
our reformulation approach.

(i) Redefine process rates as the substrate uptake rates.
The mass balance equation of AM2  is based on the bacteria

growth rates. However, the growth rates may not be known
precisely since the individual bacteria concentration is unable
to be reliably measured, especially in the solid digestion reac-
tors. By defining the process rates as the substrate uptake
rates, the yield coefficients kS1,1, and kS2 , 2 are fixed as −1.
Meanwhile, it is known that the methane and the primary
organic substrate (COD) are not produced by acidogenic and
methanogenic processes, respectively. Therefore, these yield
coefficients can be fixed such that the identification procedure
[31] can be implemented.

(ii) Introduce the maximum substrate degradation rates as state
variables.

The maximum substrate degradation rate corresponds to the
multiplication of maximum specific uptake rate and biomass
concentration.

(iii) Consider ammonium’s contribution to the alkalinity of the
solution.

In AM2, it is assumed that the total alkalinity is not affected
by process rates. This assumption provides a good approxi-
mation of alkalinity when treating substrate does not contain
protein or amino acids. However, as the substrate in the
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