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This paper introduces new problem-size reduction heuristics for the multidimensional knapsack
problem. These heuristics are based on solving a relaxed version of the problem, using the dual
variables to formulate a Lagrangian relaxation of the original problem, and then solving an estimated
core problem to achieve a heuristic solution to the original problem. We demonstrate the performance
of these heuristics as compared to legacy heuristics and two other problem reduction heuristics for the
multi-dimensional knapsack problem. We discuss problems with existing test problems and discuss

the use of an improved test problem generation approach. We use a competitive test to highlight the
performance of our heuristics versus the legacy heuristic approaches. We also introduce the concept of
computational versus competitive problem test data sets as a means to focus the empirical analysis of

heuristic performance.
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1. Introduction

As real systems continue to grow in complexity, optimization
problem formulations will continue to get larger and more complex.
In these cases, finding exact solutions often requires excessive
computing time and computational resources. Further, since these
large problem formulations often involve parameters that are just
estimates, exact optimal solutions may not have much practical value.
In such cases, using an optimization heuristic and quickly obtaining a
near-optimal solution may better satisfy a real world practitioner. As
a result, heuristics and meta-heuristics continue to garner research
interest and provide solutions to actual problems.

The integer knapsack problem (KP), and its generalization, the
multidimensional knapsack problem (MKP), are frequently used
to model various decision-making processes: manufacturing
in-sourcing [1], asset-backed securitization [2], combinatorial
auctions [3,4], computer systems design [5], resource-allocation
[6], set packing [7], cargo loading [8], project selection [9], cutting
stock [10], and capital budgeting (early examples include Lorie
and Savage [11], Manne and Markowitz [12], Weingartner [13]).
Our focus is on the MKP.

The MKP has the following form:

Maximize

Z= ZC]XJ‘ (1)
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where ¢;>0,b;>0, all g; >0 and x;=1 if an item is selected,
x; =0 if an item is not selected. Additionally, we require that at
least one a;; > 0 for each j.

2. Legacy greedy heuristics

Hooker [14] suggests that the performance of algorithms
may be analyzed in two ways: one is to analyze performance
analytically relying on the methods of deductive mathematics,
and the other is to analyze performance empirically using compu-
tational experiments. We employ the empirical approach in this
research and use this empirical approach to specifically compare
our heuristics to comparable legacy heuristics. We do not
consider the performance of meta-heuristics such as tabu search,
genetic algorithms, ant colony algorithms, etc.

There are a number of effective greedy solution procedures for
the MKP; for instance Toyoda [15], labeled as TOYODA, Senju and
Toyoda [16], labeled as S-T, Loulou and Michaelides [17], labeled
as L-M, Kochenberger et al. [18], labeled as KOCHEN, and Fox and
Scudder [7], labeled as FOX. Our testing includes our implementa-
tion of each of these approaches. We also compare results to three
recent approaches. Akcay et al. [19] introduced a primal effective
capacity heuristic (PECH). Designed for the general MKP, PECH
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selects items for the knapsack based on capacity and reward and
is applied easily to the 0-1 MKP. Bertsimas and Demir [20]
describe an approximate dynamic programming approach for the
MKP, which we label (B & D). Their method approximates the
optimal value at each stage using a suboptimal method which
they refer to as a base heuristic. They use an adaptive fixing
greedy heuristic as the base heuristic after comparing it to
selected legacy greedy approaches. We compare our approaches
via results on benchmark test problems.

Problem transformation and problem reduction methods
have been used to provide heuristic solutions. For instance, a
Lagrangian formulation of a MKP creates an unconstrained
problem while a surrogate constraint approach creates a single
constraint knapsack problem. Solutions to these transformed
problems estimate the optimal solution to the actual problem.
Boyer et al. [21] use a surrogate method, with dual variables from
the LP-relaxation of (1)-(3) as the surrogate multipliers, and
a dynamic programming solution method they label HDP. They
also add a limited branch and cut (LBC) improvement phase for
a second solution approach, HDP-LBC. We also compare our
approaches to the Boyer et al. [21] approaches via results on
similar benchmark test problems.

We focus on a problem reduction approach in this work.
Problem reduction involves removing variables from the formula-
tion or at least fixing those variables to some pre-determined
value. As expounded below, we exploit information from a
Lagrangian relaxation formulation of the MKP to dynamically
estimate the core problem of the MKP; non-core variables are
fixed to values of 0 or 1. We solve this core problem, expand its
solution to include the fixed, non-core variables, and return the
MKP heuristic solution. We compare our approach to two MKP
core-problem approaches, described fully in Section 6.

3. Empirical analysis of heuristics

The empirical analysis of heuristics involves the study of
heuristic performance over some range of test problems. Such
studies should produce performance insights, a ranking among
the candidate heuristic performers examined, or both. To gain
performance insight, particularly as a function of test problem
characteristics, test problem instances should be experimentally
designed (see Rardin and Uzsoy [22]). We call such test problems
empirical-test-focused problems or simply computational test
sets. To gain ranking insight, such as which heuristic is the best,
test problems should cover the full range of potential problem
instances as realized by fully considering the range of problem
characteristics. The random generation of these problems should
include systematic control of problem parameters, such as
distribution of parameters or correlation structure among the
problem parameters. This systematic yet random problem
generation ensures the full coverage of defined test problem
characteristic ranges (see Cho et al. [23]). We call such test
problems ranking-test-focused problems or simply competitive
test sets. Results from computational test sets provide perfor-
mance insight as a function of problem characteristics. Results
from competitive test sets provide insights into heuristic
performance over the full range of potential problem character-
istics and thus improved inferences to heuristic performance on
actual problems. In this work, we compare heuristics using all
types of problem sets.

Unfortunately, researchers too often limit their use of test
problems to those sets that were used by other researchers. These
comparative results are fine for benchmarking purposes. How-
ever, these legacy test sets generally lack experimental design
rigor and do not provide the full range of problem characteristic

Table 1
Range of objective function to constraint function correlations in Chu and Beasley
[24] MKP test problems.

File Min p¢, Max pe, (n,m)

mknapcb1 0.094 0.511 (100, 5)
mknapcb2 0.163 0.461 (100,10)
mknapcb3 0.189 0.403 (100, 30)
mknapcb4 —-0.157 0.459 (250, 5)
mknapcb5 0.003 0.326 (250, 10)
mknapcb6 0.030 0.308 (250, 30)
mknapcb7 —0.256 0.437 (500, 5)
mknapcb8 —0.192 0.307 (500, 10)
mknapcb9 -0.074 0.213 (500, 30)

(n,m) represents (variables, constraints) in problems.
Each file contains 30 test problems.
The pg, is the correlation between the objective function and a constraint.

realizations particularly in terms of constraint tightness (see Cho
et al. [23]) and in the correlation levels among sets of problem
coefficients (see Table 1 for the Chu and Beasley [24] set as an
example). Nearly all legacy test problem sets use similar
constraint slackness ratios for each constraint within a
particular problem, a practice found in the Chu and Beasley [24]
test set and the random instances generated for the analysis in
Boyer et al. [21]. Problems are harder to solve, and more realistic,
when constraint slackness ratios vary among the constraints
[23,25]. We explicitly examine such problem sets in this research.
Interestingly, Kellerer et al. [26] provide a comprehensive
review of the family of knapsack problems and include a chapter
on the 0-1 MKP. Their Section 5.5 summarizes the common suite
of correlation induction strategies: uncorrelated, weakly corre-
lated, strongly correlated, etc. While not quantified, their plots of
coefficients from these induction strategies show near perfect
correlation for all but the uncorrelated method. Using the analysis
method of Reilly [27], Hill and Reilly [28] indicate that these
induction schemes induce correlation levels of zero for the
uncorrelated method and correlation levels above 0.97 for all
other methods. Test problems, either computational or competi-
tive, should cover a full range of test problem coefficient
correlation values. See Reilly [29] for a detailed discussion.

4. Test sets employed in this research

Hill and Reilly [25] provide a two-dimensional knapsack
problem (2KP) test set (1120 problems). Cho et al. [30] developed
a five-dimensional knapsack problem (5KP) test set (3780
problems) that varied and controlled problem characteristics,
specifically the constraint slackness and correlation structure,
across their entire range of values, via a designed experimental
approach. For constraint construction, two different constraint
slackness values were used. Constraint slackness, S;, is the ratio of
the right-hand side value of constraint i to the sum of the
coefficients for that constraint; S; = b;/ E}'zl a;. This value is pre-
set and used to generate the right-hand side value in a test
problem once the constraint coefficients have been randomly
generated. A slackness code of “1” indicates S; = 0.30 (tight
constraint) and a slackness code of “2” indicates S; = 0.70 (a loose
constraint). Each constraint is generated using its own marginal
distribution of coefficients to avoid generating problems with
identical constraints.

The study by Hill and Reilly [25] varied constraint slackness
settings and problem coefficient correlation structure. The
stronger effect on performance was due to constraint slackness
setting, but a critical factor in the experimental design employed
was the full range of coefficient correlation structures used.
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