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a  b  s  t  r  a  c  t

Second  generation  biorefineries  transform  lignocellulosic  biomass  into  chemicals  with  higher  added
value  following  a conversion  mechanism  that consists  of: pretreatment,  enzymatic  hydrolysis,  fermenta-
tion  and  purification.  The  objective  of  this  study  is  to identify  the optimal  operational  point  with  respect  to
maximum  economic  profit  of a large  scale  biorefinery  plant  using  a systematic  model-based  plantwide
optimization  methodology.  The  following  key  process  parameters  are  identified  as  decision  variables:
pretreatment  temperature,  enzyme  dosage  in  enzymatic  hydrolysis,  and  yeast  loading  per  batch  in  fer-
mentation.  The  plant  is  treated  in  an integrated  manner  taking  into  account  the interactions  and  trade-offs
between  the  conversion  steps.  A sensitivity  and  uncertainty  analysis  follows  at  the  optimal  solution
considering  both  model  and  feed  parameters.  It is  found  that  the  optimal  point  is more  sensitive  to  feed-
stock  composition  than  to model  parameters,  and  that  the  optimization  supervisory  layer  as  part  of  a
plantwide  automation  system  has  the  following  benefits:  (1)  increases  the  economical  profit,  (2)  flattens
the  objective  function  allowing  a wider  range  of  operation  without  negative  impact  on profit,  and  (3)
reduces  considerably  the  uncertainty  on profit.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Second generation lignocellulosic biorefineries reached com-
mercial reality in 2012 [1], and several large scale plants are in
operation nowadays including Beta Renewables, Abengoa Bioen-
ergy, GranBio and POET-DSM [2]. Most biorefineries produce
bioethanol, but the drop in oil price reduced the demand on the
biofuel. However, plant upgrades for chemicals with higher-added
values are pursued making biorefineries still competitive in an oil
dependent environment [3].

This study deals with optimizing the daily operation of a large
scale second generation biorefinery with a well established conver-
sion route for bioethanol production. The biomass conversion route
is typically the result of a previous techno-economic optimization
assessment that took place at a design level before constructing the
plant. In contrast, the focus of this contribution is to perform model-
based optimization of the daily operation of a demonstration scale
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plant that has already been designed and built, which is a new scope
as it addresses the operation optimization and not the design phase.

The latest developments in biorefinery technology show that
integrating the facility with a nearby power plant following the
Integrated Biomass Utilization System (IBUS) [4] has a major
impact on cost efficiency. E.g. the Inbicon plant is integrated
with Asnæsværket situated in Kalundborg Denmark and they are
both owned by the same company, DONG Energy. The symbiosis
between the biorefinery and the power plant allows the exchange
of by-products for consumables, e.g. lignin bio-pellets for steam.

Modeling and simulation are used in this study as enabling
technology to analyze plant performance as basis for an overall
optimization. The objective of the optimization problem is to max-
imize the plant economical profit, considering prices for the most
important consumables and end products of the process: biomass,
enzymes, yeast and ethanol.

The conversion route from lignocellulosic material to products
with higher added value consists of: pretreatment, enzymatic
hydrolysis, fermentation, and purification [1,4]. Lignocellulosic
biomass contains cellulose, hemicellulose (xylan and arabinan),
lignin, ash, and other residues [5]. The scope of the pretreatment
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Nomenclature

ˇk the  ̌ coefficient in global sensitivity analysis
ık non-dimeansional local differential sensitivity mea-

sure of cost function c with respect to parameter �k
ẋ vector of state derivatives used in dynamic mod-

elling
ẋf vector of state derivatives used in fermentation

dynamic model
RF correlation matrix for fermentation model parame-

ters
RL correlation matrix for liquefaction model parame-

ters
RP correlation matrix for pretreatment model parame-

ters
R correlation matrix for the entire integrated process
�y standard deviation of the objective function
��k

standard deviation of parameter �k
� the entire vector of model parameters. See Table 1

from the supplementary material for a full list of
model parameters

�k model parameter k. See Table 1 from the supple-
mentary material for a full list of model parameters

�R reduced set of model parameters after sensitivity
analysis

c(x, u) cost function as a relation of model states x and deci-
sion variables u. [unitcost]

Cb feedstock composition in [g/kg]
cf cost of fermentation
co value of cost function at the optimal solution
CACS

acetyls concentration [g/kg]
CCS

cellulose concentration [g/kg]
ceh cost of enzymatic hydrolysis
CEth concentration of ethanol [g/kg]
cssk

cost value in steady-state when varying parameter
k

EH 5-HMF activation energy
f(x, u) nonlinear process model of states x and inputs u

formulated as equality constraints
Fb feedstock flow rate [kg/h]
Fe enzyme dosage [kg/h]
Fs steam flow rate [kg/h]
g(x, u) inequality constraints used as ranges for decision

variables
h(xf, uf) dynamic model for C5-C6 co-fermentation
K2 cellulose to glucose reaction constant
My yeast seed [kg]
MEth mass of ethanol [kg]
Pb feedstock price [unitcost/(kg/h)]
Pe enzyme price [unitcost/(kg/h)]
Ps steam price [unitcost/(kg/h)]
Py yeast price [unitcost/kg]
PMPX

ethanol inhibition on xylose uptake
qMaxAc

maximum acetate uptake rate
RB severity factor dependency
tf final time in fermentation [h]
Ttr thermal reactor temperature [◦C]
u vector with all decision variables
uf input variables in fermentation
xf process states in fermentation
YCellG

biomass growth on glucose
YEthG

ethanol production from glucose uptake
YEthX

ethanol production from xylose uptake
zi initial guess for the optimization problem
zo optimal solution

process is to open the biomatrix, relocate lignin and partially
hydrolyze the hemicellulose such that cellulose would become
more accessible to the downstream process of enzymatic hydrol-
ysis [6]. During pretreatment, inhibitors such as organic acids,
furfural, and 5-Hydroxymethylfurfural (5-HMF) are also created
due to sugar degradation. Organic acids change the pH of medium,
but can be automatically neutralized by a pH controller for ensur-
ing optimal enzymatic conditions [7]. Furfural, 5-HMF, and acetate
are fermentation inhibitors [8], while the remaining hemicellulose
fraction leads to xylooligomers and xylose formation in the enzy-
matic hydrolysis process, which strongly inhibit the enzymatic
activity [9].

There are trade-offs between the conversion steps. Too lit-
tle biomass pretreatment would reduce the exposed cellulose
to enzymes, and also increases the amount of hemicellulose for
enzymatic hydrolysis, which would eventually decrease the glu-
cose yield due to xylose and xylooligomers inhibition. On the
other hand, too much biomass pretreatment would increase the
amount of fermentation inhibitors leading to a lower ethanol
yield.

Most existing studies focus on operational optimization con-
ducting small scale experiments in the laboratory for finding the
best pretreatment conditions such that ethanol yield is maximized
[10–13]. The traditional focus is on one unit at a time (pretreatment
versus enzymatic hydrolysis versus fermentation) but the entire
process is rarely considered although the biomass conversion steps
are inherently dependent and integrated. The single step methods
are suboptimal from an economic point of view as they do not focus
on overall process economics. Furthermore, in existing studies, the
enzymatic hydrolysis and fermentation processes are usually con-
ducted following a fixed recipe, i.e. no correction action or feedback
is taken to counteract the effects of inhibitors. For example, one
could increase the enzyme dosage when xylooligomers and xylose
inhibit glucose production, or adjust the yeast seed in fermentation
to compensate for inhibitors.

Therefore the focus of this paper is on systematic methods and
tools to facilitate the further process optimization and daily oper-
ation of second generation bioethanol plants. The paper shows
how overall optimization can be achieved and how sensitivity and
uncertainty can be assessed with respect to feedstock composition
and kinetic parameters. A Monte Carlo technique with Latin Hyper-
cube Sampling and correlation control is used for the uncertainty
analysis following the methodology from [14,15].

This paper is structured as follows: the methods section revises
the methodology for building the optimization layer for plantwide
operation, along with the theoretical part of the sensitivity and
uncertainty analysis. The results and discussion follow where the
profit curve, costs, and optimal solutions are presented along with
their uncertainty bounds. The paper concludes with a summary of
all important findings.

2. Methods

2.1. Second generation bioethanol plant

Fig. 1 illustrates a generic large scale second generation
biorefinery concept for bioethanol production. The pretreatment
process consists of a continuous thermal reactor and a separation
press, which were modeled and analyzed in [16,17]. The thermal
reactor is equipped with temperature control for adjusting the
reaction temperature Ttr [18]. When hemicellulose is hydrolyzed,
it produces xylose and arabinose (C5 sugars). After separation,
the liquid part containing the C5 sugars is directly pumped into
fermentation reactors, bypassing the enzymatic hydrolysis reac-
tors. Cellulose can also be degraded in the pretreatment process,
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