Accepted Manuscript

Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1α promotes functional repair in the injured rat spinal cord

Malgosia M. Pakulska, Charles H. Tator, Molly S. Shoichet

PII: S0142-9612(17)30250-8

DOI: 10.1016/j.biomaterials.2017.04.016

Reference: JBMT 18036

To appear in: Biomaterials

Received Date: 25 January 2017

Revised Date: 10 April 2017 Accepted Date: 12 April 2017

Please cite this article as: Pakulska MM, Tator CH, Shoichet MS, Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1α promotes functional repair in the injured rat spinal cord, *Biomaterials* (2017), doi: 10.1016/j.biomaterials.2017.04.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1 α promotes functional repair in the injured rat spinal cord

Malgosia M. Pakulska^{1,2}, Charles H. Tator, Molly S. Shoichet*^{1,2,3}

Keywords: hydrogel, chondroitinase ABC, stromal cell derived factor, spinal cord injury, controlled release, affinity release, methylcellulose

Abstract

Traumatic spinal cord injury (SCI) is a devastating event for which functional recovery remains elusive. Due to the complex nature of SCI pathology, a combination treatment strategy will likely be required for success. We hypothesized that tissue and functional repair would be achieved in a rat model of impact-compression SCI by combining degradation of the glial scar, using chondroitinase ABC (ChABC), with recruitment of endogenous neural precursor cells (NPCs), using stromal cell-derived factor 1α (SDF). To test this hypothesis, we designed a crosslinked methylcellulose hydrogel (XMC) for minimally invasive, localized, and sustained intrathecal drug delivery. ChABC was released from XMC using protein-peptide affinity interactions while SDF was delivered by electrostatic affinity interactions from polymeric nanoparticles embedded in XMC. Rats with SCI were treated acutely with a combination of SDF and ChABC, SDF alone, ChABC alone, or vehicle alone, and compared to injury only. Treatment with ChABC, both alone and in combination with SDF, resulted in faster and more sustained behavioural improvement over time than other groups. The significantly reduced chondroitin sulfate proteoglycan levels and greater distribution of NPCs throughout the spinal cord tissue with ChABC delivery, both alone and in combination with SDF, may explain the improved locomotor function. Treatment with SDF alone had no apparent effect on NPC number

¹ Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.

² Institute for Biomaterials and Biomedical Engineering, University of Toronto, ON, M5S 3G9, Canada.

³ Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.

^{*} Corresponding author: molly.shoichet@utoronto.ca, Tel: 416-978-1460

Download English Version:

https://daneshyari.com/en/article/4752333

Download Persian Version:

https://daneshyari.com/article/4752333

<u>Daneshyari.com</u>