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Statistical methods, and in particular machine learning, have been increasingly used in the drug develop-
ment workflow. Among the existing machine learning methods, we have been specifically concerned with
genetic programming. We present a genetic programming-based framework for predicting anticancer
therapeutic response. We use the NCI-60 microarray dataset and we look for a relationship between gene
expressions and responses to oncology drugs Fluorouracil, Fludarabine, Floxuridine and Cytarabine. We
aim at identifying, from genomic measurements of biopsies, the likelihood to develop drug resistance.
Experimental results, and their comparison with the ones obtained by Linear Regression and Least Square
Regression, hint that genetic programming is a promising technique for this kind of application. More-
over, genetic programming output may potentially highlight some relations between genes which could
support the identification of biological meaningful pathways. The structures that appear more frequently
in the “best” solutions found by genetic programming are presented.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We investigate the usefulness of genetic programming (GP)
[23,43] for understanding the functional relationship between gene
expressions1 and therapeutic response to four clinical agents: Flu-
orouracil (5-FU), Floxuridine, Fludarabine and Cytarabine. We use
the NCI-60 microarray dataset [8,11,38], a panel of 60 cell lines
derived from several different cancer types, including leukemias,
melanomas, ovarian, renal, prostate, colon, lung and CNS cancers.

GP is an evolutionary approach which extends the genetic model
of learning to the space of programs. It is a major variation of ge-
netic algorithms (GAs) [18,15] in which the evolving individuals are
themselves computer programs instead of fixed length strings from
a limited alphabet of symbols. In the last few years, GP has become
popular for biomedical applications. In particular, GP has been re-
cently used to mine large datasets with the goal of correlating the
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1 In our study, experiments have been conducted on cell lines, i.e. external to
people. The translation from results in laboratories to people is non-trivial and
our work has not accomplished this. For this reason, here we have used the term
“gene expressions” and not the term “patients' gene expressions”. However, in the
continuation of this paper we will sometimes improperly use the term “patients”
for simplicity.

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2009.02.015

behavior of latent features with some interesting parameters bound
to drug activity patterns. For instance, in [44] GP has been used
to classify drug-like molecules in terms of their bioavailability. In
[1] it has been used for quantitative prediction of drug induced
toxicity. In [48] GP has been applied to cancer expression profil-
ing data to select feature genes and build molecular classifiers by
mathematical integration of these genes. In [32] the usefulness of
GP to attribute selection and classification in human genetics has
been discussed. GP can be regarded as an optimization method,
which makes no assumption on the objective functions and the
data. Furthermore, as pointed out in [1], GP often automatically
performs a feature selection, proposing solutions that use subsets
of data. Thus, the motivation behind our choice of using GP is
twofold:

• Biological data, like gene expression levels, are not independent
of each other. Rather, small subsets of genes and molecules work
in cohesion [6]. These phenomena lead to high multidependency
among the features. Hence, the underlying algorithm should be
capable of extracting features from high-dimensional correlated
data.

• The dimensionality of the feature space in biomedical datasets is
normally much higher than the number of observations available
for training. Hence, automatic feature selection as well as other
methods to handle overfitting and minimizing the generalization
error should be encouraged.
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GP results are compared with the ones returned by linear regression
and least square regression.

Section 2 introduces modeling microarray data to therapeutic re-
sponse, discussing previous and related work. Section 3 presents GP
and its use in this work (a more detailed discussion of GP function-
ing can be found in Appendix A). In Section 4 the machine learning
methods used for comparison with GP are discussed. In Section 5
we describe the method employed to build the dataset used in our
experiments. In Section 6 we discuss experimental results. Finally,
Section 7 concludes the paper and offers hints for future research.

2. State of the art

2.1. DNA microarrays

DNA microarrays have dramatically accelerated many types of
investigations in many fields of medicine, bioinformatics and sys-
tems biology [29,2]. The advantages in microarrays technology and
the growing availability of biological measurements performed at
molecular level have intensified the role of machine learning meth-
ods for effective cancer prediction and classification. These mea-
surements are represented by the expression levels of thousands of
genes exhibited in different kind of tissues under the same exper-
imental conditions. The collection of gene expression data usually
results in high-dimensional datasets, composed of a huge number of
features (genes) and a relative few number of tissues. The use of a
collection of distinct DNAs in arrays for expression profiling was
first described in [24]. The use of miniaturized microarrays for gene
expression profilingwas first reported in [40] and a complete eukary-
otic genome (Saccharomyces cerevisiae) on a microarray was pub-
lished in [27]. In the last decade, many contributions have appeared
using DNA-microarrays for studying the molecular mechanism un-
derlying several cancer types. In [8], for instance, the classification of
a set of cell lines used in the National Cancer Institute (NCI)'s screen
for anticancer drugs revealed a correspondence to the ostensible ori-
gins of the tumors fromwhich the cell lines themselves were derived.
Comparison of gene expression patterns in the cell lines to those
observed in normal tissues or in tumor specimens revealed features
of the expression patterns in tumors that had recognizable counter-
parts in specific cell lines. In the same year, Scherf and coworkers
[11] used cDNA microarrays to assess gene expression profiles in 60
human cancer cell lines used in a drug discovery screen by the NCI.
Using these data, they linked bioinformatics and chemoinformatics
by correlating gene expression and drug activity patterns. They used
the NCI-60 [38] dataset, which provides a large amount of data, and
thus an excellent opportunity for modeling pharmacogenomics. This
dataset has been used also in this work, as described in Section 6.

2.2. Machine learning for DNA microarrays

Modeling the relationship between genomic features and thera-
peutic responses is of central interest in pharmacogenomics [33,12].
To identify genes that might be associated with chemosensitivity, a
cDNA microarray representing 23,040 genes to analyze expression
profiles in a set of 85 cancer tissues derived from nine human organs
was used in [9]. In [10], authors used cDNA microarrays to compare
gene expression profiles of colorectal biopsies from 25 sick tissues
and 13 healthy ones. In [7] tumor colon samples from 21 patients
with advanced colorectal cancer were analyzed for gene expression
profiling. A predictor classifier was constructed using support vector
machines. An attempt to identify the genetic components contribut-
ing to drug sensitiveness using the NCI-60 dataset has been done in
[6], using partial least squares. Feature selection methods have been
appliedwith success to genomicmicroarray data in [47,16,42,45] and
evolutionary algorithms have recently been employed in [20,28]. A

novel rank correlation-based multiobjective evolutionary bicluster-
ing method to extract simple gene interaction networks from mi-
croarray data is proposed in [5]. A survey about the role of different
soft computing paradigms, like fuzzy sets, artificial neural networks,
evolutionary computation, rough sets, and support vector machines
in bioinformatics can be found in [31].

3. Genetic programming

GP [23,43] is an evolutionary approachwhich extends GAs [18,15]
to the space of programs. Like any other evolutionary algorithm, GP
works by defining a goal in the form of a quality criterion (or fit-
ness) and then using this criterion to evolve a set (also called popu-
lation) of solution candidates (also called individuals) by mimic the
basic principles of Darwin evolution theory [4]. The most common
version of GP, and also the one used here, considers individuals as
LISP-like tree structures that can be built recursively from a set of
function symbolsF={f1, f2, . . . , fn} (used to label internal tree nodes)
and a set of terminal symbols T = {t1, t2, . . . , tm} (used to label tree
leaves). GP breeds these solutions to solve problems by executing an
iterative process involving the probabilistic selection of the fittest
solutions and their variation by means of a set of genetic operators,
usually crossover and mutation. A detailed introduction to GP and
its functioning and motivations can be found in Appendix A.

We have used a tree-based GP configuration for regression prob-
lems inspired by Koza [23], Keijzer [21,22]. Each feature in the dataset
has been represented as a floating point number. Potential solutions
(GP individuals) have been built by means of the set of functions
F={+, ∗,−, /, log, sin, cos, exp, sqrt}.2 The same technique as in [21]
has been used to avoid individuals containing a division with the
denominator equal to zero. The set of terminals T was composed
of M−1 floating point variables (where M is the number of columns
in the dataset). The fitness function we have used is the root mean
squared error (RMSE) on the training set.

Example. Suppose the names of the floating point variables con-
tained into the T set are x1, x2, . . . , xM−1. Then, a candidate solution
found by GP, expressed in infix notation, may for instance be

F(x1, x2, . . . , xM−1) = exp(x5) + x12 − x34

A tree representation of this expression is given in Fig. 1. Its fitness
is obtained by calculating the value of F(x1, x2, . . . , xM−1) on all the

Fig. 1. An example of a simple GP individual.

2 This set of functional symbols have been chosen after a large amount of
simulations and are the ones that have allowed GP to find the most performing
solutions.
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