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renal-like cells and tissues would be most attractive, but such methods were not available until recently. This sit-
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Proximal tubular cell results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based pro-
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1. Introduction electrolyte and pH homeostasis, and has also endocrinologic functions

Kidney tissue and renal cells are required for applications in com-
pound efficacy and safety screening, regenerative medicine, bioartificial
kidneys and disease modelling. A major hurdle is the availability of
functional human renal cells and tissue (Jansen et al., 2014; Tasnim et
al., 2010; Tiong et al., 2014). Stem cell-based approaches are attractive
for addressing this problem. However, whereas approaches for the di-
rected differentiation of stem cells into tissue-specific cell types had
been well established with respect to various other organs and tissues,
such as liver, heart or cartilage, nothing comparable was available for
the kidney.

This situation started to change in 2012, when a protocol was
established for the differentiation of human induced pluripotent stem
cells (hiPSC) into renal podocyte-like cells (Song et al., 2012). Briefly af-
terwards in 2013, a race started on the differentiation of pluripotent
stem cells (PSC) into different renal-like cell types and precursor-like
cells of the renal lineage, and various protocols were published
(Araoka et al., 2014; Kandasamy et al., 2015; Kang and Han, 2014;
Lam et al., 2014; Mae et al., 2013; Narayanan et al., 2013; Taguchi et
al., 2014; Takasato et al., 2014; Xia et al., 2013). In parallel, first methods
for applications of such cells were established (Kandasamy et al., 2015;
Lietal, 2014; Toyohara et al., 2015). The race continues and focuses cur-
rently on the generation of self-organizing kidney organoids (Freedman
et al,, 2015; Morizane et al., 2015; Takasato et al.,, 2015). Thus, amazing
progress has been made during the last four years and exciting opportu-
nities become available. Here, we will review these exciting
developments.

Before we go into the details of current PSC-based approaches, we
will briefly summarize background information on the kidney and its
development. The kidney is essential for the clearance of xenobiotics
and metabolic waste from the body, is indispensable for volume,
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(Brenner, 2008; Fraser and Kodicek, 1970; Wilson et al., 2004). For in-
stance, the renal interstitium contains specialized cells producing
renin, which is part of the renin-angiotensin-aldosterone hormone sys-
tem that regulates blood volume and blood pressure. Specialized inter-
stitial fibroblasts produce about 90% of the body's erythropoietin, which
controls red blood cell production (Kaissling and Le Hir, 2008; Zeisberg
and Kalluri, 2015).

The functional unit of the kidney, which is essential for most other
renal functions, is the nephron. The average nephron number per kid-
ney is ~1 million, but there are substantial individual differences
(Bertram et al., 2011). The nephron consists of the glomerulus, where
filtration of the blood occurs, and the renal tubule, into which the glo-
merular filtrate flows (Scott and Quaggin, 2015). The renal proximal tu-
bule (PT) is next to the glomerulus. The loop of Henle connects the PT
with the distal tubule (DT), which leads into the collecting duct (CD;
Fig. 1). The CD is not part of the nephron, and the branched CD tree con-
nects the nephrons with the ureter (Brenner, 2008).

Glomeruli contain a tuft of capillaries lined by the glomerular filtra-
tion barrier, which consists of specialized endothelial cells, a basal lam-
ina and the glomerular podocytes. Podocytes have a special
morphology, and their foot projections wrap around the capillary
walls and form a slit diaphragm, which is part of the glomerular filtra-
tion barrier (Reiser and Altintas, 2016; Scott and Quaggin, 2015).

The glomerular filtrate flows first into the PT, which is lined by the
proximal tubular cells (PTC). PTC have manifold functions. For instance,
they control the pH of blood and urine and reabsorb most of the water,
glucose, peptides and proteins from the glomerular filtrate (Brenner,
2008; Curthoys and Moe, 2014). They are important for electrolyte
and mineral homeostasis and produce the most active form of vitamin
D (Brenner, 2008; Curthoys and Moe, 2014; Fraser and Kodicek,
1970). They also make major contributions to the clearance of metabolic
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Fig. 1. Human kidney and nephron structure. The schematic drawing shows a cross-section of a human kidney (left). The enlargement (right) displays a nephron with a CD. The different
parts of the kidney and nephron are indicated. At the bottom, the main areas of applications for stem cell-derived renal-like cells, precursors or organoids are indicated.
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