Accepted Manuscript

Competent processing techniques for scaffolds in tissue engineering

Ranjna C. Dutta, Madhuri Dey, Aroop K. Dutta, Bikramjit Basu

PII:	\$0734-9750(17)30001-0
DOI:	doi: 10.1016/j.biotechadv.2017.01.001
Reference:	JBA 7097
To appear in:	Biotechnology Advances
Received date:	13 January 2016
Revised date:	6 January 2017
Accepted date:	7 January 2017

Please cite this article as: Ranjna C. Dutta, Madhuri Dey, Aroop K. Dutta, Bikramjit Basu, Competent processing techniques for scaffolds in tissue engineering. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jba(2017), doi: 10.1016/j.biotechadv.2017.01.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Competent Processing Techniques for Scaffolds in Tissue Engineering

Ranjna C. Dutta,^{a,b*} Madhuri Dey,^b Aroop K. Dutta,^a Bikramjit Basu^{b*}

^aExCel Matrix Biological Devices (P) Ltd, Hyderabad

^b Laboratory for Biomaterilas, Materials Research Centre, Indian Institute of Science, Bangalore *joint corresponding authors; e-mail: ranjna_dutta@rediffmail.com; bikram@mrc.iisc.ernet.in

1. Introduction

- 2. Biomaterials & Biocompatibility
- 3. Scaffolds
 - 3.1. Mechanical strength
 - 3.2 Shape/Morphology
 - 3.3 Cell-interactivity
- 4. Fabrication Techniques
 - 4.1 Conventional
 - 4.2 Advanced
 - (i) Rapid Prototyping
 - (ii) Electrospinning
 - (iii) Emulsion Templating
 - 4.3 Designed Self-assembling Peptides as Scaffold
- 5. Future Prospects

Download English Version:

https://daneshyari.com/en/article/4752551

Download Persian Version:

https://daneshyari.com/article/4752551

Daneshyari.com