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A B S T R A C T

Glycation is a nonenzymatic post-translational modification which has been found to be involved in
various biological processes and closely associated with many metabolic diseases. The accurate
identification of glycation sites is important to understand the underlying molecular mechanisms of
glycation. As the traditional experimental methods are often labor-intensive and time-consuming, it is
desired to develop computational methods to predict glycation sites. In this study, a novel predictor
named BPB_GlySite is proposed to predict lysine glycation sites by using bi-profile bayes feature
extraction and support vector machine algorithm. As illustrated by 10-fold cross-validation, BPB_GlySite
achieves a satisfactory performance with a Sensitivity of 63.68%, a Specificity of 72.60%, an Accuracy of
69.63% and a Matthew’s correlation coefficient of 0.3499. Experimental results also indicate that
BPB_GlySite significantly outperforms three existing glycation sites predictors: NetGlycate, PreGly and
Gly-PseAAC. Therefore, BPB_GlySite can be a useful bioinformatics tool for the prediction of glycation
sites. A user-friendly web-server for BPB_GlySite is established at 123.206.31.171/BPB_GlySite/.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the common and important post-translational
modifications (PTMs), lysine glycation can potentially affect
various biological processes, such as conformation, efficacy and
immunogenicity (Miller et al., 2011). Glycation is the process of the
typically covalent bonding of a sugar molecule (such as fructose or
glucose) to a protein or lipid molecule. In contrast to glycosylation
requiring the controlling action of enzymes, glycation is a
nonenzymatic modification process. The unstable Schiff base
firstly rearranges to form a more stable Amadori product.
Subsequently, the Amadori product can react further to form
the advanced glycation end products (AGEs) which are irreversible
cross-linked products (Cho et al., 2007; Lapolla et al., 2001). Lysine
glycation can occur in both intracellular and extracellular proteins
(Garlick and Mazer, 1983; Shilton and Walton, 1991). In general,
intracellular glycation is more complex than extracellular glyca-
tion due to the multiple potential sources in cytoplasm can also
react to form AGEs. Kinetic analysis of glycation reaction has shown
that the amount of glycation at steady state is proportional to the
glucose concentration, to protein half-life and to the rate of

glycation (Schleicher and Wieland, 1986). Previous studies have
demonstrated that the glycation is closely related to the
occurrence and development of various human diseases, such as
diabetes and its vascular complications (Ahmed et al., 2005), renal
failure (Agalou et al., 2005), Parkinson’s disease and Alzheimer’s
disease (Ling et al., 1998). Therefore, deciphering the underlying
molecular mechanisms and the biological function of glycation
might be beneficial in the treatment of the above-mentioned
diseases. However, the molecular mechanism of glycation remains
largely unknown.

To better understand the molecular mechanisms of glycation,
the fundamental step is to identify glycated substrates and their
corresponding glycation sites with high accuracy. Several large-
scale proteomics methods such as mass spectrometry (Zhang et al.,
2009; Thornalley and Naila, 2014) have been applied to detect
glycation sites. However, as we know, the experimental
approaches are often labor-intensive and time-consuming. The
computational studies of protein glycation are gaining increasing
attention. Up to now, several computational methods have been
developed to predict glycation sites from protein sequences. With
the ensemble artificial neural network algorithm, Johansen et al.
(2006) proposed the first predictor NetGlycate for the prediction of
lysine glycation sites. Liu et al. (2015) proposed a computational
method PreGly for predicting glycation sites, which used amino
acid factors, amino acid occurrence frequency and the composition
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of k-spaced amino acid pairs feature extraction based on maximum
relevance minimum redundancy (mRMR) feature selection algo-
rithm. Recently, Xu et al. (2017) developed a predictor named Gly-
PseAAC to predict glycation sites by using position-specific amino
acid propensity and support vector machine (SVM) algorithm.
However, the predicted performance of Gly-PseAAC obtained the
Matthew’s correlation coefficient 0.3166 is not satisfactory, and
there is still room for improvement.

To improve the prediction performance of glycation sites
predictor, it is important to find an effective feature extraction
method to distinguish between the glycation sites and non-
glycation sites. In this study, a commonly used feature extraction
technique, called Bi-Profile Bayes (BPB) (Shao et al., 2009) was used
to encode every training peptide. Based on many aspects of
assessments, we found the BPB was more suitable for encoding the
protein sequence around the glycation sites than other feature
extraction methods including amino acid composition (AAC),
pseudo amino acid composition (PseAAC), amino acid factors
(AAF), binary encoding (BE) and composition of k-spaced amino
acid pairs (CKSAAP). Furthermore, by combining BPB feature
extraction with SVM algorithm, a novel predictor named BPB_Gly-
Site was constructed to predict glycation sites from protein
sequences. As illustrated by 10-flod cross-validation test, the
performance of BPB_GlySite outperformed three existing predic-
tors significantly for predicting lysine glycation sites. Finally, we
analyzed the importance of the positions around glycation sites
based on bi-profile bayes features. Feature analysis showed that
the residues in some positions around glycation sites might play
the most important role in the prediction of glycation sites. These
analytical and predictive results might offer some useful clues for
studying the mechanisms of glycation and related experimental
validations.

As demonstrated by previous publications (Chou, 2011; Jia et al.,
2015; Xu et al., 2014), to establish an accurate glycation sites
prediction system, we should carry out the following procedures:
(a) construct a valid and reliable training dataset to train and test
the prediction model; (b) extract effective features from peptide
samples to distinguish between the glycation sites and non-
glycation sites; (c) develop a robust and powerful algorithm to
operate the prediction; (d) perform proper cross-validation tests to
objectively assess the performance of the predictor; (e) establish a
user-friendly and accessible web-server for the proposed predictor.
Next, we will describe above steps one-by-one.

2. Materials and methods

2.1. Dataset

Xu’s training set (Xu et al., 2017) was used to train and test our
model. Xu’s training set was retrieved from protein lysine
modifications database CPLM (Liu et al., 2014), and it consisted
of 223 experimentally annotated glycation lysine sites and 446
non-glycation lysine sites. The sliding window was used to
represent every lysine residue K of dataset. According to Xu’s
work (Xu et al., 2017) and our preliminary trials, the window size
was set to 15. Thus, every training sample was represented as a
peptide segment of length with 7 residues downstream and 7
residues upstream of lysine residue K. To unify the length of each
peptide, the added residue ‘X’ was used to fill the positions without
sufficient residues. The glycated peptides were used as positive
training samples, while the non-glycated peptides were used as
negative training samples.

2.2. Feature construction

As an effective feature extraction technique, Bi-Profile Bayes
(BPB) encoding has been successfully applied to various biology
problems, including the prediction of protein methylation sites
(Shao et al., 2009), O-GlcNAcylation sites (Jia et al., 2013),
mitochondrial proteins of malaria (Jia et al., 2011), caspase
cleavage sites (Song et al., 2010), type III secreted effectors (Wang
et al., 2011). In this study, BPB was used to encode training
peptides.

Given a sequence fragment S = s1s2...sn, where sj (j = 1,2, . . . ,n)
stands for one amino acid and n denotes the length of the sequence
fragment. S belongs to one of two categories, C1 or C-1, where C1 and
C-1 represent glycation sites and non-glycation sites, respectively.
According to Bayes’ rule, assume that sj (j = 1,2, . . . ,n) are mutually
independent, the posterior probability of S for the two categories
can be given by:

Pðc1jSÞ ¼ PðSjc1ÞPðc1Þ=PðSÞ ¼
Yn
j¼1

Pðsjjc1ÞPðc1Þ=PðSÞ ð1Þ

Pðc�1jSÞ ¼ PðSjc�1ÞPðc�1Þ=PðSÞ ¼
Yn
j¼1

Pðsjjc�1ÞPðc�1Þ=PðSÞ ð2Þ

Formulas (1) and (2) can be reformulated as:

logðPðc1jSÞÞ ¼
Xn
j¼1

logðPðsjjc1ÞÞ � logðPðSÞÞ þ logðPðc1ÞÞ ð3Þ

logðPðc�1jSÞÞ ¼
Xn
j¼1

logðPðsjjc�1ÞÞ � logðPðSÞÞ þ logðPðc�1ÞÞ ð4Þ

Assume that prior distribution of category is uniform, i.e. P
(c1) = P(c�1), the decision function can be represented by Formula
(5):

f ðSÞ ¼ sgnðlogðPðc1jSÞÞ � logðPðc�1jSÞÞÞ
¼ sgnð

Xn
j¼1

logðPðsjjc1ÞÞ �
Xn
j¼1

logðPðsjjc�1ÞÞÞ ð5Þ

According to the literature (Shao et al., 2009), Formula (5) can
further be written as:

f ðSÞ ¼ sgnð~w �~pÞ ð6Þ

where sgnðxÞ ¼ 1;ifx � 0
�1;ifx < 0

�
;~w ¼ ðw1; w2; :::; wn; wnþ1; :::; w2nÞ is

weigh vector; ~p ¼ ðp1; p2; :::; pn; pnþ1; :::; p2nÞ is the posterior
probability vector, p1, p2, ..., pn represent the posterior probability
of each amino acid at each position in the positive training peptides
(category C1) and pn+1, pn+2, ..., p2n represent the posterior
probability of each amino acid at each position in the negative
training peptides (category C2), which is the so-called Bi-profile.
Here, the posterior probability was calculated by the occurrence of
each amino acid at each position in training peptides. Therefore,
every training peptide was encoded as 30-dimensional vectors by
BPB encoding scheme. For example, for a given training peptide
‘AVTALWGKVNVDEVG’, it was encoded as
ðpþA ; pþV ; :::; pþV ; pþG ; p�A ; p�V ; :::; p�V ; p�GÞ by BPB encoding. Where
‘pþA ; pþV ; :::; pþV ; pþG ’ mean the occurrence of A,V, . . . ,V, G at each
position in positive training peptides, respectively;
‘p�A ; p�V ; :::; p�V ; p�G ’ mean the occurrence of A,V, . . . ,V, G at each
position in negative training peptides, respectively.
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