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In this article, we propose a Lagrangian smoothing algorithm for quadratic assignment problems, where

the continuation subproblems are solved by the truncated Frank–Wolfe algorithm. We establish

practical stopping criteria and show the algorithm finitely terminates at a KKT point of a continuation

subproblem. The quality of the returned solution is studied in detail. Finally, limited numerical results

are provided.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Quadratic assignment problem (QAP) is one of the great challenges
in combinatorial optimization. It is known to be NP-hard. An
e-solution is NP-hard too. For comprehensive surveys of QAPs, we
refer to [1,8,9,11,14]. The formulation of QAP can be written as

min f ðXÞ ¼ trace ðAXBXT
Þ

s:t: XAPn; ð1:1Þ

where A and B are n� n matrices, ’trace’ denotes the sum of all
diagonal elements, and Pn is the set of n� n permutation matrices,
i.e., Pn ¼ fX ¼ ðXijÞARn�n : Xe¼ XT e¼ e;XijAf0;1gg, where e is a
vector with all components equal to one. Denote the continuous
relaxation of Pn by Pn ¼ fX ¼ ðXijÞARn�n : Xe¼ XT e¼ e;XijZ0g,
which is also the convex hull of Pn, i.e., Pn ¼ convfPng.

In most practical applications, the QAP models are symmetric,
i.e., both A and B are symmetric. Furthermore, if only one of these
matrices is symmetric (say A), we can transform it to a QAP where
both matrices are symmetric since

trace ðAXBT XT Þ ¼ trace AX
BTþB

2
XT

� �
:

Therefore, we make the symmetric assumption throughout this
article.

Continuation methods are new promising approaches to
solving QAP. In [12] the logarithmic smoothing algorithm (LogSA)
was applied to solve QAP and limited numerical results were
reported. The Lagrangian smoothing algorithm for QAP was firstly
devised in [16]. Numerical experiments indicated its high
efficiency. In this article, we further study this algorithm. We

propose a new version, establish practical stopping criteria and
prove the algorithm finitely terminates at a KKT point of a
continuation subproblem. We also analyze the quality of the
obtained solution.

The article is organized as follows. In Section 2, a new version
of Lagrangian smoothing algorithm is proposed. The convergence
result is analyzed in Section 3. Implementation details and
numerical results are presented in Section 4. The last section
makes some concluding remarks.

Notation. For a square matrix A, vecðAÞ gives the column vector
obtained by stacking the columns of A in increasing order of their
index. The Kronecker product of matrices A and B is denoted by
A� B. Let Sn be the set of symmetric matrices of order n, i.e.,
Sn ¼ fXARn�n : XT ¼ Xg. For A;BASn, AkB denotes that A� B is
positive semidefinite. lminðAÞ denotes the minimal eigenvalue of A.
Let Cn be the set of functions with continuous n-th order
derivatives. rf and r2f denote the gradient and Hessian of f,
respectively.

2. Lagrangian smoothing algorithm

Basically, global smoothing is to linearly combine the
original objective f ðXÞ with an additional function FðXÞ such
that

FðX;mÞ ¼ f ðXÞþm �FðXÞ ð2:1Þ

is strictly convex on Pn with respect to X.

Theorem 2.1 (Bertsekas [3] and Ng [12]). Suppose F : Pn-R

is a C2 function such that the minimum eigenvalue of r2F is

greater than a positive number e for all XAPn. Then there exists a

real M40 such that if m4M, then f þm �F is a strictly convex

function on Pn.
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The logarithmic barrier function

FLog
ðXÞ ¼ �

Xn

i ¼ 1

Xn

j ¼ 1

lnðXijÞ �
Xn

i ¼ 1

Xn

j ¼ 1

lnð1� XijÞ ð2:2Þ

was introduced as a smoothing function in [12]. It is well-defined
when XAð0;1Þn�n. If any value of Xij is 0 or 1, then FLog

ðXÞ ¼ þ1.

Theorem 2.2 (Ng [12]). There exists a real M40 such that if mZM,
then f þm �FLog is a strictly convex function on ð0;1Þn�n.

Notice that QAP (1.1) is equivalent to

min trace ðAXBXT
Þ ð2:3Þ

s:t: trace ðXXT
Þ ¼ n; ð2:4Þ

XAPn: ð2:5Þ

Introducing a Lagrangian multiplier for the constraint (2.4), we
obtain the corresponding Lagrangian function

LðX;m0Þ ¼ trace ðAXBXT
Þþm0 � trace ðXXT

Þ � nm0; ð2:6Þ

which motivates the following global smoothing function [16]:

FLag
ðXÞ ¼ trace ðXXT

Þ: ð2:7Þ

Theorem 2.3. Let the n� ðn� 1Þ matrix V be such that

VT e¼ 0; VT V ¼ In�1:

Define Â ¼ VT AV , B̂ ¼ VT BV and

l̂min ¼minflminðB̂ÞlmaxðÂÞ;lmaxðB̂ÞlminðÂÞ;lminðB̂ÞlminðÂÞ; lmaxðB̂ÞlmaxðÂÞg:

ð2:8Þ

Then f þm0 �F
Lag is a strictly convex function on Pn for any

m04 � l̂min.

Proof. Let

Q ¼
effiffiffi
n
p ^V

� �
AOn :¼ fXARn�n : XXT

¼ Ing:

We introduce a well-known result due to Hadley et al. [10].

Lemma 2.1 (Hadley et al. [10]). Let X be n� n and Y be

ðn� 1Þ � ðn� 1Þ. Suppose that X and Y satisfy

X ¼Q
1 0

0 Y

� �
Q T ¼

1

n
eeTþVYVT : ð2:9Þ

Then

Xe¼ XT e¼ e;

XAOn()YAOn�1:

Taking Eq. (2.9) into f ðXÞ and FLag
ðXÞ, respectively, we have

trace ðAXBXT
Þ ¼ trace ðÂYB̂YT Þþ

2

n
trace ðVT AeeT BVYT

Þþ
1

n2
ðeT AeÞðeT BeÞ;

trace ðXXT
Þ ¼ trace ðYYT

Þþ1:

Consequently, the reduced Hessian of f þm0 �F
Lag is 2B̂ � Âþ2m0I.

It is positive definite if and only if m04 � lminðB̂ � ÂÞ ¼ � l̂min,
where l̂min is defined in (2.8). &

Linearly combining f þm0 �F
Lag with the exact penalty function

(see Theorem 2.4):

PðX;m1Þ ¼ trace ðAXBXT
Þþm1 � trace ðXXT

Þ; ð2:10Þ

we obtain a sequence of functions

PLðX;mÞ ¼ trace ðAXBXT
þmXXT

Þ; ð2:11Þ

and define

HðX;mÞ ¼ AXBXT
þmXXT : ð2:12Þ

Then we solve the following parametric optimization problem,
denoted by QAPðmÞ:

min PLðX;mÞ
s:t: XAPn; ð2:13Þ

for a decreased sequence fmgD ½m1;m0�.

Theorem 2.4. The optimal function values of QAP (1.1) and Problem

(2.13) are equal for all m¼ m1r � l̂max, where

l̂max ¼maxflminðB̂ÞlmaxðÂÞ;lmaxðB̂ÞlminðÂÞ;lminðB̂ÞlminðÂÞ; lmaxðB̂ÞlmaxðÂÞg:

ð2:14Þ

Proof. Since Pn ¼ convfPng and Pn is the extreme point set of Pn,
it is sufficient to show that PLðX;mÞ is concave on Pn for all
mr � l̂max. Similarly to the proof of Theorem 2.3, we conclude
that the reduced Hessian of PLðX;mÞ is 2B̂ � Âþ2mI and it is
negative semidefinite if and only if mr � lmaxðB̂ � ÂÞ ¼ � l̂max,
where l̂max is defined in (2.14). &

Given any parameter m, we use the canonical Frank–Wolfe
algorithm [5] to solve the subproblem (2.13). It approximates the
objective function with its first order Taylor expansion at any
given iteration point Xk, resulting in the linear programming
subproblem (omitting the constant terms)

min trace ðrxHðXk;mÞ � XT Þ

s:t: XAPn; ð2:15Þ

where rxHðXk;mÞARn�n denotes the gradient of HðX;mÞ with
respect to X at Xk, i.e.,

rxHðXk;mÞ ¼ 2AXkBþ2mXk:

Furthermore, Problem (2.15) is a typical linear assignment
problem (LAP) and can be solved in Oðn3Þ time, for example,
using Hungarian method.

The optimal solution of the LAP (2.15), X�k , is used to construct
the descent search direction Dk ¼ X�k � Xk. A line search

a� ¼ arg min
aA ½0;1�

PLðXkþaDk;mÞ ð2:16Þ

furnishes the next iteration

Xkþ1 ¼ Xkþð1� bþba�Þa�Dk; ð2:17Þ

where bA ½0;1� is a fixed parameter and the process is repeated.
Generally, the new step length satisfies ð1� bþba�Þa�ra�, where
the equality holds when b¼ 0 or a� ¼ 1.

It is easy to verify that the point sequence fXkg gene-
rated by the above Frank–Wolfe algorithm converges to X�, a KKT
point of (2.13). But the convergence is slow and hence
it is quite time-consuming to obtain X�. This phenomenon
motivates us to approximate X� using truncated Frank–Wolfe
algorithm, which only generates the first several iterative points.

The above process is repeated for a decreased sequence fmig,
the so-called outer iteration.

To introduce practical stopping criteria, we need some lemmas.

Lemma 2.2. Suppose XkAPn is an optimal solution of the LAP

(2.15), i.e., trace ðrxHðXk;mÞðXk � X�k Þ
T
Þ ¼ 0. Then it is also a KKT

point of QAPðmÞ (2.13).

Proof. The KKT system of QAPðmÞ (2.13) is

ðrxHðX;mÞÞij � li � sjZ0; i; j¼ 1; . . . ;n; ð2:18Þ

XijððrxHðX;mÞÞij � li � sjÞ ¼ 0; i; j¼ 1; . . . ;n; ð2:19Þ

XAPn: ð2:20Þ
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