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Şuayip Yüzbaşı ∗, Murat Karaçayır
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a b s t r a c t

In this study, we consider a nonlinear first order model about the infection of CD4+ T-cells by HIV. In
order to solve it numerically, we present a new method based on exponential polynomials reminiscent
of the Galerkin method. Considering the approximate solutions in the form of exponential polynomials,
we first substitute these approximate solutions in the original model. Some relations are thus obtained,
which we express in terms of matrices. Taking inner product of a set of exponential functions with these
matrix expressions then yields a nonlinear system of algebraic equations. The solution of these equations
gives the approximate solutions of the model. Additionally, the technique of residual correction, which
aims to reduce the error of the approximate solution by estimating this error, is discussed in some detail.
The method and the residual correction technique are illustrated with an example. The results are also
compared with numerous existing methods from the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Infection with Human Immunodeficiency Virus (HIV) is known
to result in the suppression of the immune system due to depletion
of CD4+ T-cells (known commonly as T-helper cells or T4-cells),
cells which play a central role in the human immune system
(Perelson, 1989). Most of the immunological abnormalities that
accompany HIV infection can be attributed to the decline in these
cells (Lane and Fauci, 1985). Since T4-cells have such a central role
in immune regulation, their depletion can have a disastrous effect
on the functioning of the immune system. In fact, the extent of the
decline in the number of T4-cells in peripheral blood is used as an
indicator of the disease stage (Perelson et al., 1993; Redfield et al.,
1986).

After the progress of Acquired Human Immunodeficiency Syn-
drome (AIDS) in an infected individual was explored to be in a
close relationship with the number of T4-cells in peripheral blood,
the necessity to describe this relationship quantitatively was soon
realized. In the last three decades, the field of mathematical biol-
ogy saw the emergence of numerous models on this subject. One
of the first, and arguably the most famous, of such models was pro-
posed by Perelson (1989) in 1989. This model consisted of a system

∗ Corresponding author.
E-mail addresses: syuzbasi@akdeniz.edu.tr (Ş. Yüzbaşı),
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of three first order differential equations on three unknown func-
tions; namely, the population of healthy T4-cells, the population of
infected T4-cells and the concentration of free HIV in bloodstream.
Perelson et al. (1993) extended this model to four unknown func-
tions by recognition of the fact that not all infected T4-cells are
capable of producing a virus. Later on, by ignoring this differenti-
ation, Culshaw and Ruan (2000) considered this model in terms of
three unknown functions. After some simplifications, this model
can be described by the following:

dT

dt
= s − ˛T + rT

(
1 − T + I

Tmax

)
− kVT,

dI

dt
= kVT − ˇI,

dV

dt
= NˇI − �V.

(1)

Here, the system is considered in the time interval 0 ≤ t ≤ a and with
the initial conditions T(0) = T0,I(0) = I0,V(0) = V0.

The above first order nonlinear ordinary differential equation
system will be our main interest throughout this paper. Here T(t)
represents the concentration of healthy T4-cells at time t, I(t) rep-
resents the concentration of infected T4-cells at time t, and V(t)
represents the concentration of free HIV at time t. The explanation
of the related parameters is as follows: s represents the source of
T4-cells from the precursors, ˛ is the natural death rate of T4-cells,
r is their growth rate, and Tmax is their carrying capacity. k is the

http://dx.doi.org/10.1016/j.compbiolchem.2016.12.006
1476-9271/© 2016 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compbiolchem.2016.12.006
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiolchem.2016.12.006&domain=pdf
mailto:syuzbasi@akdeniz.edu.tr
mailto:mkaracayir@akdeniz.edu.tr
dx.doi.org/10.1016/j.compbiolchem.2016.12.006
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rate of infection of T4-cells with free virus present in the environ-
ment and hence is a plus term for infected T4-cells. ˇ is the overall
death rate for infected T4-cells, with the assumption that N virus
particles are released by each dying (infected) T4-cell. Lastly, � is
the death rate of viruses.

Since the model (1) is known to possess no exact solutions
as of today, numerical methods have been called for. To name
a few, it has been approximately solved by homotopy perturba-
tion method (Merdan, 2007), a modified version of variational
iteration algorithm (Merdan et al., 2011), perturbation-iteration
algorithm (Khalid et al., 2015), an improved version of the Bessel
collocation method (Yüzbaşı, 2012a), the differential transform
method (Srivastava et al., 2014), and Laplace Adomian decomposi-
tion method (Ongun, 2011). Apart from numerical solutions, users
interested in its global dynamics can refer to (Wang and Li, 2006). In
this paper, we will use the scheme presented in the next section to
find approximate solutions of the model (1) in terms of exponential
polynomials. Namely, we will seek solutions expressed as a linear
combination of the functions 1, e−t, e−2t, . . ., e−Nt. Recently, such
an approach was employed in (Yüzbaşı, 2015) with the addition of
collocation points.

The remaining of the paper is designed as follows: In Section 2,
the numerical method to be used is presented. The subject of Sec-
tion 3 is a technique which aims to obtain better solutions using an
already obtained solution. Section 3.2 contains a note on how the
Taylor truncation error can be used to derive an upper bound for
the error of the present scheme. In Section 4, we apply the method
to an example problem and compare our results with other results
from the literature. Finally, Section 5 contains comments regarding
the results of this paper.

2. Method of solution

In this section, we describe the numerical scheme that we will
use to obtain approximate solutions of the system (1). Since this
scheme should be programmable in computer, matrix counterparts
of expressions will be provided whenever possible as it is par-
ticularly easier to work with matrices in most computer algebra
systems.

We will seek solutions to the system (1) in the form of polyno-
mials in exponential functions having nonpositive powers. More
explicitly, we start by assuming

TN(t) =
N∑

k=0

ske−kt, IN(t) =
N∑

k=0

uke−kt, VN(t) =
N∑

k=0

vke−kt

are the approximate populations of healthy T4-cells, infected T4-
cells and free virus particles at time t, respectively. Our aim is
to obtain the unknown coefficients sk, uk and vk and hence the
approximate solutions TN, UN and VN. We first note that the above
equations can be expressed in terms of matrices by collecting the
unknown coefficients and variables inside separate vectors. Thus,
we can write

TN(t) = EXN(t)S, UN(t) = EXN(t)U, VN(t) = EXN(t)V,

where

S = [ s0 s1 s2 . . . sN ]T
,

U = [ u0 u1 u2 . . . uN ]T
,

V = [ v0 v1 v2 . . . vN ]T
,

EXN(t) = [ 1 e−t e−2t . . . e−Nt ].

The derivatives can also be expressed in terms of matrices with the
help of the (N + 1) × (N + 1) square matrix M with entries Mi,i = 1 − i

for i = 1, 2, . . ., N + 1 and Mi,j = 0 otherwise. More explicitly, if M is
the matrix given by

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

0 −1 0 . . . 0

0 0 −2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −N

⎤
⎥⎥⎥⎥⎥⎦

,

then we have the following for the derivatives in (1):

dTN

dt
= EXN(t)MS,

dIN
dt

= EXN(t)MU,
dVN

dt
= EXN(t)MV.

Next step is to take care of the nonlinearities present in the equa-
tions related to T(t) and I(t) in the system (1). We do this by defining
a companion matrix associated with the coefficient vectors S which
we defined previously. The companion matrix in question is the
(2N + 1) × (N + 1) matrix S with entries defined according to the
following rule: Sij = si−j if j ≤ i ≤ j + N and Sij = 0 otherwise. More
explicitly, S is given by

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 0 0 . . . 0

s1 s0 0 . . . 0

s2 s1 s0 . . . 0

...
...

...
. . .

...

sN sN−1 sN−2 . . . s0

0 sN sN−1 . . . s1

0 0 sN . . . s2

...
...

...
. . .

...

0 0 0 . . . sN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, the matrix counterparts of the nonlinear terms in (1) are given
by the following:

T2
N(t) = EX2N(t)SS, TN(t)IN(t) = EX2N(t)SU,

TN(t)VN(t) = EX2N(t)SV.

Next step is to substitute the matrix expressions that we have
obtained so far in the system (1). Doing this, we arrive at the fol-
lowing expressions:

EXN(t)MS + (˛ − r)EXN(t)S + r

Tmax
EX2N(t)S(S + U)

+ kEX2N(t)SV = s,

EXN(t)MU − kEX2N(t)SV + ˇEXN(t)U = 0,

EXN(t)MV − NˇEXN(t)U + �EXN(t)V = 0.

(2)

Now is the time to apply the central idea of our numerical method.
Namely, we apply inner product to the above equations with the
elements of the set

� = {1, e−t , e−2t , . . ., e−Nt},

where the inner product is defined by

〈f, g〉 =
∫ a

0

f (t)g(t)dt.
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