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a  b  s  t  r  a  c  t

In predictive microbiology, the (induced) lag-phase is a phenomenon of specific interest, as

it  has a large impact on the assessment of safety and quality of food products. This lag phase

has been studied mostly on a macroscopic level. However, a quest for more mechanistically-

based predictive models has started, for example, through the integration of a metabolic

reaction network into widely used macroscopic model structures. This multi-scale modeling

approach is called dynamic metabolic flux analysis (dMFA). In this contribution, a recently

developed algorithm for dMFA is used to estimate the metabolic fluxes in Escherichia coli

K12  during an experimentally induced lag phase through a sudden shift in temperature.

To  study this phenomenon, controlled bioreactor experiments were performed: on the one

hand at a fixed and optimal temperature for growth (37 ◦C), and on the other hand starting at

20 ◦C, with a sudden temperature shift to 37 ◦C during the exponential growth, inducing an

intermediate lag phase. The evolution of biomass and metabolite concentrations was mon-

itored during these experiments. After dMFA analysis of the gathered measurements, some

interesting patterns in metabolic activity during the different growth phases are revealed.

The  described case study is a first practical test case to assess the capabilities of the recently

developed dMFA methodology in an experimental predictive microbiology setting.

©  2016 Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.

1.  Introduction

The concept of predictive microbiology entails that a detailed
knowledge of the behavior, i.e., growth, survival and inactiva-
tion, of microorganisms in food products can be expressed in
mathematical models, which enable an objective evaluation
of the microbiological safety and quality of foods (McMeekin
et al., 1997). An important phenomenon studied in predictive
microbiology is the lag phase, which is a period in which no
growth occurs as microorganisms have to adapt to a (sud-
den) change in environmental conditions. This can happen
because of inoculation of the organism in a new medium, in
which case the phase is called initial lag, or due to a change
in one or more  environmental variables, e.g., temperature or
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pH, during an exponential growth phase, in which case the
period is called an intermediate or induced lag phase.  Because
of the frequent changes in environmental conditions taking
place during the production, distribution and consumption of
food products, a good understanding of the lag phase is of
vital importance for the assessment of microbial safety and
quality of food products. Once the influence of environmental
conditions on the occurrence and the length of the lag phase
is determined, shelf-life of food products can be determined
more  accurately, and strategies can be developed to inhibit the
growth of microorganisms by keeping them in this lag phase
for extended periods of time.

For these reasons, the lag phase has been studied exten-
sively in recent years in predictive food microbiology (Swinnen
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Nomenclature

List of symbols and abbreviations

3PG 3-phosphoglycerate
6PG 6-phosphogluconate
AA amino acid
Ac acetic acid
AcCoA Acetyl-Coenzyme A
AIC akaike information criterion
AICc corrected AIC criterion value
AKG alpha-ketoglutarate
ATP adenosine triphosphate
Ala alanine
Arg arginine
Asn asparagine
Asp aspartate
CFU total viable plate count (colony forming units)
Cit citrate
cin vector of inlet tank concentrations
cint vector of intracellular metabolite concentra-

tions
CTR carbon dioxide transfer rate
Cys cysteine
d number of free fluxes
DHAP dihydroxyacetone-phosphate
dMFA dynamic metabolic flux analysis
DW dry weight
E4P erythrose-4-phosphate
F objective function
Fin incoming gas flow rate
F6P fructose-6-phosphate
FBP 1,6-fructose-biphosphate
FTHF formyltetrahydrofolate
Fum fumarate
g number of internal spline knots
G3P glyceraldehyde-3-phosphate (G3P)
G6P glucose-6-phosphate
GAP glyceraldehyde-3-phosphate
Gln glutamine
Glu glutamate
Gluc glucose
Gly glycine
His histidine
HPLC high performance liquid chromatography
Icit isocitrate
Ile isoleucine
I identity matrix
Iirr irreversibility matrix
K basis for the null space of the intracellular stoi-

chiometric matrix
k spline degree
l minimum number of time points for starting

the free flux estimation
L-DAP L-diaminopimelate
Leu leucine
Lys lysine
Mal  malate
METHF methyltetrahydrofolate
MEETHF methylentetrahydrofolate
Met  methionine
m total number of metabolites/concentration

states

mext number of extracellular metabolites
mij average measurement for output j at time point

ti

mint number of intracellular metabolites
n total number of reactions
NAD nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
ng total number of spline knots over all free fluxes
nirr number of irreversible reactions
nmeas number of measurements
nout number of outputs
np number of parameters
nrev number of reversible reactions
ntime number of measurement time points
nx number of states
ny number of outputs
OAC oxaloacetate
OUR oxygen uptake rate
p parameter vector
Phe phenylalanine
Pro proline
P5P pentose-5-phosphate
PEP phosphoenolpyruvate
PP pentose phosphate
Pyr pyruvate
pu vector of spline parameters
qbio biomass selection vector
R5P ribose-5-phosphate
RID refractive index detector
Ru5P ribulose-5-phosphate
S full stoichiometric matrix
S7P seduheptulose-7-phosphate
Ser serine
Suc succinate
SucCoA succinyl-coenzyme A
sbio row of the stoichiometric matrix corresponding

to the biomass pseudometabolite
Se combined extracellular and biomass stoichio-

metric matrix
Sext rows of the stoichiometric matrix correspond-

ing to extracellular metabolites
�ij measurement standard deviation for output j at

time point ti

Sint rows of the stoichiometric matrix correspond-
ing to intracellular metabolites

T temperature
TA transaldolase
TCA tricarboxylic acid
Thr threonine
TK transketolase
Trp tryptophane
Tyr tyrosine
t0 initial time
tf final time
tknot vector containing the knot locations for each

free flux
u vector of free fluxes
V reactor volume
Vm ideal gas standard molar volume
x vector of (concentration) states
x0 vector of initial values for the states
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