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We consider a two-stage assembly flowshop scheduling problem with the objective of minimizing a
weighted sum of makespan and maximum lateness. The problem is known to be NP-hard, and therefore,
we propose heuristics to solve the problem. The proposed heuristics are Tabu search (Tabu), particle
swarm optimization (PSO), and self-adaptive differential evolution (SDE). An extensive computational
experiment is conducted to compare performances of the proposed heuristics. The computational experi-
ment reveals that both PSO and SDE are much superior to Tabu. Moreover, it is statistically shown that
PSO performs better than SDE. The computation times of both PSO and SDE are close to each other and
they are less than 40 and 45 s, respectively, for the largest size problem considered.
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1. Introduction

The two-stage assembly flowshop scheduling problem has re-
ceived attention recently due to its applicability in real life problems.
For example, Potts et al. [1] described an application in personal
computer manufacturing where central processing units, hard disks,
monitors, keyboards, and etc. are manufactured at the first stage,
and all the required components are assembled to customer speci-
fication at a packaging station (the second stage). Lee et al. [2] de-
scribed another application in a fire engine assembly plant. The body
and chassis of fire engines are produced in parallel in two different
departments. When the body and chassis are completed and the en-
gine has been delivered (purchased from outside), they are fed to an
assembly line where the fire engine is assembled. Yet another appli-
cation is in the area of queries scheduling on distributed database
systems, Allahverdi and Al-Anzi [3]. In short, many real life prob-
lems can be modeled as a two-stage assembly flowshop scheduling
problem.

A two-stage assembly flowshop scheduling problem is defined
as following. There are m machines at the first stage while there
is only one machine at the second stage. There are n jobs available
for scheduling such that each job has m+1 operations. The first m
operations of a job are performed at the first stage in parallel by m
machines and the final operation is conducted at the second stage.
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Each of the m operations of a job at the first stage is performed by
a different machine and the last operation on the machine at the
second stage may start only after all m operations at the first stage
are completed. Each machine can process only one job at a time. It
should be noted that when there is only one machine at the first
stage (i.e., m = 1), then the problem reduces to the two-machine
flowshop scheduling problem.

Different performance measures are considered in the scheduling
research. These performance measures may be classified as comple-
tion time related or due date related. Makespan (Cmax), a comple-
tion time related performance measure, is one of the most widely
used performance measures. Minimizing makespan is important in
situations where a simultaneously received batch of jobs is required
to be completed as soon as possible. For example, a multi-item or-
der submitted by a single customer needs to be delivered as soon
as possible. The makespan criterion also increases the utilization of
resources. On the other hand, minimizing maximum lateness (Lmax)
is a widely used due date related measure. This objective is partic-
ularly important in situations where there is a penalty to complete
a job beyond its due date and the penalty increases with the gap
between the two.

The two-stage assembly flowshop problem to minimize Cmax is
addressed by several papers including Lee et al. [2], Potts et al. [1],
Hariri and Potts [4], Sun et al. [5], and Allahverdi and Al-Anzi [3]. The
problem is also addressed with respect to Lmax criterion, Allahverdi
and Al-Anzi [6] and Al-Anzi and Allahverdi [7].

The research mentioned so far addressed only a single criterion
of either Cmax or Lmax while the majority of real life problems re-
quires the decision maker to consider both Cmax and Lmax before
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arriving at a decision. The two-stage assembly scheduling problem
with both Cmax and Lmax has not been addressed and is the topic of
the current paper. The only related research that we are aware of is
the work of Allahverdi and Al-Anzi [8] who addressed the problem
with the objective of minimizing a weighted sum of Cmax and mean
completion time.

In this paper, we address the two-stage assembly flowshop
scheduling problem with the objective of minimizing a function
which is a weighted sum of Cmax and Lmax. The problem is described
in the next section, and three heuristics are proposed in Section 3.
The heuristics are evaluated through randomly generated data and
the results are analyzed in Section 4. The summary of the work and
possible future research directions are presented in Section 5.

2. Problem description

There is a set of n jobs simultaneously available for processing. It
is assumed that preemption is not allowed, i.e., any started operation
has to be completed without interruptions. There arem+1 operations
related to each job where the firstm operations have to be performed
on stage one (each of the m operations by one of the m machines at
stage one) while the last operation is performed at stage two on the
assembly machine. Let

ti,j operation time of job i on machine j (at stage one),
i = 1, . . . ,n, j = 1, . . . ,m,

pi operation time of job i on assembly machine (at stage two),
Ci completion time of job i,
di due date of job i,
Li lateness of job i

Note that job k is complete once all tk,j (j = 1, . . . ,m) on the first
stage and pk on the second stage are completed. It should be also
noted that the pk on the second stage may start only after all tk,j
(j = 1, . . . ,m) on the fist stage have been completed.

Potts et al. [1] and Allahverdi and Al-Anzi [6] showed that per-
mutation schedules are dominant with respect to Cmax and Lm, re-
spectively. Therefore, permutation schedules are also dominant for
the problem addressed in this paper. Thus, we restrict our search
for the optimal solution to permutation schedules. In other words,
the sequence of jobs on all of the machines, including the assembly
machine, is the same.

Let the bracket denote the job in a given position. For example,
p[j] denotes the processing time of the job in position j on the second
(assembly) machine. It can be shown that the completion time of
the job in position j is as follows:

C[j] = max

⎧⎨
⎩ max

k=1,...,m

⎧⎨
⎩

j∑
i=1

t[i,k]

⎫⎬
⎭ ,C[j−1]

⎫⎬
⎭+ p[j] where C[0] = 0

Hence, the makespan (Cmax) and maximum lateness (Lmax) are
defined as

Cmax = C[n]

Li = Ci − di

and hence,

Lmax = max(L1, L2, . . . , Ln)

If the weight given to Cmax is denoted by � (and that of Lmax

by 1−�), then the value of the objective function (VOF) can be
computed as

VOF = �Cmax + (1 − �)Lmax

where 0 < � < 1. Notice that when � > 0.5, more weight is given to the
criterion of Cmax while more weight is given to the criterion of Lmax

when � < 0.5. The objective is to find a schedule which minimizes
the value of VOF.

The described problem has no polynomial solution since it is
known that the problem for � = 1 (i.e., when the objective is to min-
imize Cmax) is NP-hard in the strong sense even for m = 2 (see Lee
et al. [2]). Therefore, there are two approaches that can be used to
solve the problem. One approach is to develop an implicit enumer-
ation technique such as branch-and-bound algorithm to solve for
relatively small problems while the other approach is to develop
heuristics. In this paper, we opted to develop the latter approach.
The next section describes the developed heuristics.

3. Heuristics

In this section, we propose three heuristics for the problem. The
first proposed heuristic is a Tabu search (Tabu) heuristic, the second
is a particle swarm optimization (PSO) heuristic, and the third is
an self-adaptive differential evolution (SDE) heuristic. All the three
heuristics start with some given initial sequences and iteratively
improve until a stopping criterion is met.

One of the initial sequences used in all the three heuristics is
the earliest due date (EDD) sequence since it is known that the EDD
sequence performs well for Lmax criterion. Another initial sequence
that performs well for the other performance measures, i.e., Cmax, is
desirable. It is known that if there is only one machine at the first
stage (i.e., m = 1), then the two-stage assembly flowshop scheduling
problem is reduced to the regular two-machine flowshop schedul-
ing problem for which the well known Johnson algorithm [9] is
optimal with respect Cmax performance measure. For the problem
that we address m > 1, we consider m artificial problems where
each problem consists of a single machine on the first stage and
the assembly machine at the second stage. Let Johnson-i denote the
sequence obtained by applying the well known Johnson algorithm
to the artificial problem consisting of the ith (i = 1, . . . ,m) machine
on the first stage and the assembly machine on the second stage.
Therefore, we will have m sequences, i.e., Johnson-1, Johnson-2, . . . ,
Johnson-m. Let JNS denote the sequence from among Johnson-
i which has the minimum VOF. Another words, VOF(JNS) =
min(VOF(Johnson-1), VOF(Johnson-2), . . . ,VOF(Johnson-m)) where
VOF(Johnson-i) denotes the value of the objective function of the
sequence Johnson-i.

3.1. Tabu

The Tabu heuristic randomly chooses the best sequence from
the neighborhood of a current sequence by making changes to the
current sequence. A new change is allowed to the current sequence
if this change is not in the previous h changes, i.e., Tabu list. A list of
length h of position pairs, i.e., a pair of the form (i, j) where the jobs
in positions i and j were exchanged, are kept in a list for checking.
The list h is called the Tabu list. The changes are repeated iteratively
until a stopping criterion is met.

For example, consider scheduling of five jobs and assume that
at some point of time we have three sequences of S1 = [3, 5, 2,
4, 1], S2 = [5, 4, 1, 2, 3], and S3 = [5, 2, 1, 4, 3]. In this exam-
ple, it is easy to see that sequences S2 and S3 are closer to each
other than sequences S1 and S3 because S2 can be obtained from
S3 by exchanging jobs 2 and 4 in the sequences while to obtain
S3 from S1 one needs to reorder 4 jobs. In this context, we define
the distance between two sequences as the number of mismatches
between the two sequences. In the above example, the distance be-
tween S2 and S3 is 2 while that of S1 and S3 is 4. According to
this definition, the minimum distance than can be achieved is 2 for
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