Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry



# Invited paper

# Interaction between disulfide/thiolate mediators and ruthenium complex in dye-sensitized solar cells



National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

#### ARTICLE INFO

# ABSTRACT

Article history: Received 7 August 2017 Received in revised form 12 September 2017 Accepted 13 September 2017 Available online 18 September 2017

Keywords: Thiolate Disulfide Ru complex dye Dye-sensitized solar cell Iodide Iodine The intermolecular interactions of thiolate anions and disulfide molecules as disulfide/thiolate  $(T_2/T^-, S_2/S^-)$  redox couples with a Ru bipyridyl complex (Z907) are investigated using density functional theory. **T** and **S** are 1-methyl-*1H*-tetrazole-5-thiolate and 2-methyl-5-trifluoromethyl-*2H*-1,2,4-triazole-3-thiolate, respectively. Similar to the typical reductant I<sup>-</sup>, the S atoms of thiolate anions interact with the oxidized Z907 (Z907<sup>+</sup>) via the terminal S atoms of the isothiocyanate (NCS) ligands. However, nearly 40% of the atomic charge and spin still remain after complexation. If a second thiolate anion, as well as I<sup>-</sup>, is considered, the atomic charge and spin are transferred completely. The distances of the formed S-S bonds for the Z907<sup>+</sup>-two anions species correspond to isolated dithiolate radicals. These results suggest that Z907<sup>+</sup> can be completely regenerated by two thiolate anions via a two-step mechanism rather than by only one thiolate anion through a one-step mechanism as previously suggested. Unlike the I<sub>2</sub> molecule, the unfound Z907-disulfide complex structure supports the slower recombination process with the disulfide/thiolate electrolyte compared with the I<sub>3</sub><sup>-</sup>/I<sup>-</sup> system in dye-sensitized solar cells.

## 1. Introduction

Dye-sensitized solar cells (DSSC) consist of three fundamental components: a sensitized photoanode, a cathode, and an electrolyte solution. The photoanode is typically a metal complex or an organic dye-sensitized nanocrystalline TiO<sub>2</sub> film on a transparent conductive oxide (TCO) glass. The cathode is a platinized TCO glass, and the electrolyte solution contains a redox couple. When irradiated with light, the dye in the ground state absorbs a photon and reaches an excited state. The photoexcited dye then injects an electron into the TiO<sub>2</sub> conduction band. The injected electron diffuses through the TiO<sub>2</sub> layer into the TCO glass, passing the external load to the cathode, where it reduces the electrolyte. Finally, the reduced electrolyte returns the photo-oxidized dye to its original ground state (regeneration). In addition to these forward electron-transfer pathways, backward reactions occur simultaneously, e.g., recombination of injected electrons in the TiO<sub>2</sub> with acceptors in the electrolyte solution. This results in the degradation of performance of DSSC.

To date,  $I_3^-/I^-$  has been widely used as the redox couple in the electrolyte solution, reaching the highest confirmed solar energy conversion efficiency ( $\eta$ ) of nearly 12% under the global AM 1.5 spectrum [1]. However, alternative redox couples have been

https://doi.org/10.1016/j.jphotochem.2017.09.035 1010-6030/© 2017 Elsevier B.V. All rights reserved. recently developed [2] in order to overcome some of the  $I_3^{-}/I^{-}$ system drawbacks, such as limited open-circuit photovoltage ( $V_{oc}$ ), concomitant corrosion of the electrode metals, and an undesired dark color that absorbs some of the irradiating sunlight that decreases the photocurrent [3]. Notably, organic sulfur redox couples with noncorrosive and transparent nature have drawn attention as promising alternative mediators. In 2010, Wang and coworkers presented a new disulfide/thiolate redox couple (Fig. 1a and b) with a  $\eta$  value above 6% due to the intrinsic characteristics such as rapid dye regeneration, very slow charge-recombination, and fast mass transport [4]. Following this landmark paper, a number of thiolate-based electrolytes have been studied aiming to improve the  $V_{\rm oc}$  because of the ease of modification of the molecules and the related redox potentials [5-8]. Simultaneously, various cathode materials have been examined [5–16] because the typical Pt cathode shows poor electrocatalytic activity with the disulfide/thiolate electrolyte, which lowers the fill factor (ff) of DSSC [4,17].

The regeneration reaction of the disulfide/thiolate redox couple by the cathode has also been studied [9,17], but the regeneration mechanism of the oxidized dye through the disulfide/thiolate mediator has yet to be elucidated. Although the interactions of the oxidized dye with the iodide species, which are closely associated with the regeneration mechanism, have been experimentally [18,19] and theoretically [20,21] investigated, the intermolecular interactions between the oxidized dye and the thiolate species





E-mail address: h.kusama@aist.go.jp (H. Kusama).



Fig. 1. Chemical structures of (a) T<sup>-</sup>, (b) T<sub>2</sub>, (c) S<sup>-</sup>, (d) S<sub>2</sub>, and (e) Z907.

remain unknown. The lack of studies is very surprising because the regeneration of oxidized dye is a key function of DSSCs [22]. Additionally, Wang et al. believe that the properties of the disulfide/thiolate redox couple, such as the molecular structure and size, may influence the interfacial charge-recombination [23], but evidence to support that belief is still missing. To enhance the DSSCs' performance using disulfide/thiolate electrolytes, both the dye regeneration and recombination mechanisms must be investigated.

Here, we focus on the intermolecular interactions of the disulfide/thiolate redox mediators bis(1-methyl-1*H*-tetrazol-5-yl)-disulfide/1-methyl-1*H*-tetrazole-5-thiolate ( $T_2/T^-$ , Fig. 1a and b) [4,6] and 3,3'-dithiobis(2-methyl-5-trifluoromethyl-2*H*-1,2,4-triazole)/2-methyl-5-trifluoromethyl-2*H*-1,2,4-triazole-3-thiolate ( $S_2/S^-$ , Fig. 1c and d) [6] with the sensitizer Ru(4,4'-dicarboxy-2,2'-bipyridine)(A,4'-dinonyl-2,2'-bipyridine)(NCS)<sub>2</sub> (Z907, Fig. 1e) [4,11] using quantum chemical calculations at the density functional theory (DFT) level. The regeneration and the

recombination mechanism for the Ru dye by disulfide/thiolate mediator are discussed based on the DFT results compared with that of the typical  $I_3^-/I^-$  redox system (Fig. S1). The findings in this study have implications in the design of dye/electrolyte structures and should improve DSSCs' performance by promoting regeneration and suppressing recombination.

## 2. Computational details

DFT calculations were performed using Gaussian 16 software at the Research Center for Computational Science, Okazaki, Japan, and Gaussian 16W in personal computers [24]. Optimizations of the ground state geometry were conducted at the hybrid DFT level using the mPW1PW91 functional, which combines the Perdew-Wang 1991 exchange functional as modified by Adamo and Barone (mPW1) with the Perdew and Wang's 1991 gradient-corrected correlation functional (PW91) [25]. This combination improves the well-known deficiency in the long-range behavior of the DFT functional, which is especially important for investigations on noncovalent intermolecular interactions [25-27]. The DGDZVP basis set [28,29] was used for all systems; it provides appropriate results for the intermolecular halogen bond structures [30]. Frequency calculations were performed to confirm the optimized structures with no imaginary frequencies, corresponding to real minima on the entire potential energy surface. The solvent effects of acetonitrile (dielectric constant=35.688), which has been experimentally used as a solvent for DSSCs' electrolyte solutions [4,6,11], were modeled using a conductor-like polarizable continuum model (C-PCM) [31] within the self-consistent reaction field theory.

To calculate the atomic charges and the spin densities, Hirshfeld population analysis [32], Mulliken population analysis [33], and natural population analysis (NPA) [34,35] were conducted on the optimized geometries at the same level.

#### 3. Results and discussion

### 3.1. Structures of thiolate and disulfide species

Fig. 2 depicts the optimized geometries of the thiolate and disulfide species. For disulfide T<sub>2</sub> (Fig. 1b), two formally identical thiotetrazole moieties interconnected via a disulfide bridge are rotated relative to each other around the S-S line, where the torsion angle of C1-S1-S2-C3 is 86.8°. The H2...N8 distance, 2.539 Å, is smaller than the net van der Waals radii of the binding atoms (2.75 Å) [36], indicating intramolecular hydrogen bonding. The distances for the S1-S2 bond (2.076 Å) and the angles for the C1—S1—S2 and C3—S2—S1 bonds (102.0°) are in good agreement with previous X-ray results [37]. For S<sub>2</sub> (Fig. 1d), the S1—S2 bond distance (2.097 Å), the C1–S1–S2 and C5–S2–S1 bond angles (101.7°), and the C1-S1-S2-C5 torsion angle (86.5°) closely resemble T<sub>2</sub>, but the intramolecular hydrogen bond is not observed due to the C8 trifluoromethyl group. This could account for the smaller bond energy, over 1 kcal mol<sup>-1</sup>, for  $S_2$  than for  $T_2$ . Compared with that of the disulfide molecules, the S1-S2 bond distances for the dithiolate radicals ( $\mathbf{T}_2^{-\bullet}$  and  $\mathbf{S}_2^{-\bullet}$ ) are over 0.7 Å longer. The H2···N8 distance of the intramolecular hydrogen bond for  $T_2^{-\bullet}$  is also larger than that of  $T_2$ . The torsion angles of C1-S1-S2-C3 for  $T_2^{-\bullet}$  and C1-S1-S2-C5 for  $S_2^{-\bullet}$  are around 104°, which is broader than those of  $\mathbf{T}_2$  and  $\mathbf{S}_2$ .

According to the literature [4,38], a  $T_3^-$  charge transfer complex seems to exist in the disulfide/thiolate redox electrolyte solution because  $T^-$  and  $T_2$  are colorless, but their mixture is pale yellow; however, the structure of this complex remains unknown. We also optimized the geometries of  $T_3^-$  and  $S_3^-$  species in the singlet electronic spin state. Three thiolates connect to one another via the Download English Version:

https://daneshyari.com/en/article/4753784

Download Persian Version:

https://daneshyari.com/article/4753784

Daneshyari.com