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Abstract

This paper deals with the efficient implementation of parametric quadratic programming that is specialized for large-scale mean-
variance portfolio selection with a dense covariance matrix. The aim is to calculate the whole Pareto front of solutions that represent
the trade-off between maximizing expected return and minimizing variance of return.

We describe and compare in a uniform framework several techniques to speed up the necessary matrix operations, namely the initial
matrix decomposition, the solution process in each iteration, and the matrix updates. Techniques considered include appropriate
ordering of the matrix rows and columns, reducing the size of the system of linear equations, and dividing the system into two parts.
Regarding implementation, we suggest to simultaneously use two different matrix representations that are specifically adapted to
certain parts of the algorithm and propose a technique that prevents algorithm stalling due to numerical errors. Finally, we analyse
and compare the runtime of these algorithm variants on a set of benchmark problems. As we demonstrate, the most sophisticated
variant is several orders of magnitude faster than the standard implementation on all tested problem instances.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Parametric quadratic programming; Mean-variance portfolio selection; Dense covariance matrix; Efficient implementation

1. Introduction

Classical portfolio optimization aims at both maximizing the expected return of a portfolio and minimizing its
variance. It has been shown that under the assumption of multivariate normally distributed asset returns or, in the case
of arbitrary returns, a quadratic utility function (see Markowitz [1–3] and especially [4]), the optimal portfolio for the
investor lies on the mean-variance Pareto front or—as it is often called—the Efficient Frontier. A portfolio is efficient
if no other feasible portfolio exists that either improves both optimization criteria or improves just one but does not
worsen the other. The Efficient Frontier consists of all efficient portfolios.

In the absence of any information about an investor’s risk aversion, or when the investor wants to take a look at all
“interesting” portfolios, an investment consultant needs to be able to provide the complete Pareto front. This might also
be required if there is a large group of investors with similar constraints but different risk-return preferences. Algorithms
for the calculation of all portfolios on the Pareto front belong to the category of parametric quadratic programming
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algorithms—or shorter: PQP algorithms—and are presented in several publications, the first of them was the so-called
critical line algorithm mentioned in the seminal work by Markowitz [2].

To our knowledge, all these algorithms that are able to calculate the whole Efficient Frontier assume that the search
space is convex, usually by requiring that all constraints are linear in nature. The reason for our interest in the efficiency
of the PQP algorithms is based on research in constraints that do not fit into the linear framework, and therefore, PQP
algorithms are not applicable directly. However, by selecting different convex subsets in the nonconvex search space,
we are able to use a PQP algorithm to calculate a Pareto front for each subset. These Pareto fronts are then merged into
a solution for the problem with nonconvex restrictions. For a more detailed description on how the convex subsets are
chosen and on how a PQP algorithm can be integrated into an evolutionary algorithm framework, the reader is referred
to Branke et al. [5]. For such applications, efficiency is particularly crucial, as the PQP algorithm has to be executed
multiple times, and a faster PQP algorithm therefore permits a larger number of convex subsets to be calculated.

Only very few publications that describe algorithms for PQP give any hints on how to implement these algorithms
in an efficient and numerically stable way for large portfolio sizes, which is our main focus in the remainder of this
paper.

The subsequent sections of the paper are organized as follows: Section 2 presents the algorithm framework that
is the basis for our implementation. In Section 3 we compare other existing approaches for parametric and nonpara-
metric quadratic programming. Based on our framework from Section 2 several modifications that are intended to
shorten algorithm runtime are described in Section 4. The test results for these algorithm variants are presented in
Section 5. In Section 6 two different matrix representations are presented, and we show how both are incorporated into
the implementation of the algorithm variant with the best runtime properties. We also highlight one implementation
detail that is crucial to achieve correct solutions. We finish with a short conclusion in Section 7.

2. An algorithm for PQP

We have used a modified version of the active set algorithm for PQP presented by Best [6] and have adapted it for
portfolio selection. In order to introduce all the variables and the used methodology, we summarize the algorithm in
a short way and refer the reader to Best [6] for a more detailed description. The implemented algorithm solves the
following problem for the parameter �e in the interval [0,+∞):

min{xTCx− �eμ
Tx |AIx�bI, AEx= bE} (1)

with the element xi of the vector x denoting the fraction of the budget invested in asset i. C is the covariance matrix, μ
denotes the vector of expected returns of all assets. AI and AE are the coefficient matrices of inequalities and equalities;
bI and bE denote the respective right-hand sides.

To start the parametric programming routine, at least one portfolio on the Pareto front has to be known. Due to the
fact that it is easier and computationally cheaper to solve an optimization problem with a linear objective function
instead of a quadratic objective function, our PQP algorithm starts at the portfolio with the highest possible expected
return, which is the solution of the following optimization problem:

max{μTx |AIx�bI, AEx= bE}. (2)

If this solution is unique, as is nearly always the case for “normal” portfolio selection problems, the portfolio lies at
the end of the Efficient Frontier that is associated with the highest �e.

Otherwise, there are infinitely many portfolios that achieve the highest possible expected return, and it is necessary
to select from all these solutions to problem (2) the portfolio with the lowest variance:

min{xTCx |μTx= Em, AIx�bI, AEx= bE}. (3)

Here, Em denotes the maximum expected return calculated in (2). This is a quadratic programming problem that can
be solved with any of the available standard codes or packages for this problem class (see e.g. the NEOS Optimization
Software Guide [7]).

If not all portfolio weights have an upper and lower bound, it is possible that the expected return is unbounded
and therefore a solution to problem (2) does not exist. In this case it is necessary to compute the minimum variance
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