
A single machine scheduling problem to minimize total early work

Yoav Ben-Yehoshua, Gur Mosheiov n

School of Business Administration, The Hebrew University, Jerusalem 91905, Israel

a r t i c l e i n f o

Article history:
Received 4 May 2015
Received in revised form
25 November 2015
Accepted 19 March 2016
Available online 25 March 2016

Keywords:
Scheduling
Single machine
Total early work
Dynamic programming

a b s t r a c t

We study a single machine scheduling problem, where the objective is minimum total early work. In this
setting, a job is penalized according to the duration of the parts of the job completed prior to its due-date.
First we prove that the problem is NP-hard. Then, based on a number of properties of an optimal
schedule, we introduce a pseudo-polynomial dynamic programming algorithm, verifying NP-hardness in
the ordinary sense. Our numerical tests indicate that the dynamic programming solves problems of
hundreds of jobs in very reasonable time.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent survey, Sterna [7] introduced the various published
papers on “scheduling papers with late work criteria”. In this class
of scheduling models, the quality of the solution is measured by
the duration of the parts of the jobs scheduled after their due-
dates. Thus, the penalty on job lateness is bounded by the job
processing time. One can describe late work as “the number of
tardy job units” (see [3]). Potts and Van Wassenhove [5] provided
the most significant results in scheduling with total late work:
they proved NP-hardness, introduced an exact dynamic pseudo-
polynomial programming algorithm, and solved several special
cases. Sterna [7] provides a number of applications of the late work
criterion, and claims that in general, it appears to be relevant to all
settings where the penalty depends on the number of tardy jobs
performed in the system, regardless of how late these are. Some
applications arise in control systems [2,5], computerized control
systems [4], batch scheduling problems [6], various issues in
agriculture [1], and systems containing perishable items [5].

In this paper we focus on a single machine scheduling problem,
where the objective is to minimize the total early work. In contrast
to the measure of total late work, in this setting, a job is penalized
according to the duration of the parts of the job completed prior to
its due-date. Thus, the maximum penalty of a job is equal to its
processing time (in the case that it is fully early). A typical appli-
cation of such system is in a distributed computing setting, where
a continuously working server needs to transfer calculation results
from one computer to another. In the case that the results arrive at

the server before the receiver is available, the server will have to
write these large data sets onto its hard disk, rather than trans-
ferring them directly to the receiver. Clearly, if the receiver is
available, the process of writing the data as an intermediate pro-
cess is avoided. Thus, the goal is to minimize the server's writing
process, which becomes significant, as mentioned, when trans-
ferring large data sets that must be written onto a hard disk. In
such systems, only early completed jobs are penalized, and the
penalty is proportional to the length/size of the job.

As commonly assumed in scheduling problems involving ear-
liness measures, we consider here only non-delay schedules.
(Otherwise, optimality is trivially obtained by sufficiently delaying
the jobs.) Such schedules (with no idle times prior to the first job
and between consecutive jobs) are justified in many manufactur-
ing systems, where the production process cannot be stopped until
the entire set of jobs is finished. We prove that the problem stu-
died here is NP-hard. Then, we propose a pseudo-polynomial dy-
namic programming (DP) algorithm, implying that the problem is
NP-hard in the ordinary sense. Our numerical tests indicate that
the proposed DP is very efficient, and the solution of problems of
medium size (up to 200 jobs) requires very reasonable computa-
tional effort.

In Section 2 we provide the notation and formulation of the
problem. Section 3 contains the proof of NP-hardness. In Section 4
we introduce the dynamic programming algorithm, and report the
results of the numerical tests.

2. Formulation

Consider a set of n jobs that need to be processed on a single
machine with no idle times. The processing time of job j is

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2016.03.010
0305-0548/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: msomer@mscc.huji.ac.il (G. Mosheiov).

Computers & Operations Research 73 (2016) 115–118

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.03.010
http://dx.doi.org/10.1016/j.cor.2016.03.010
http://dx.doi.org/10.1016/j.cor.2016.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.03.010&domain=pdf
mailto:msomer@mscc.huji.ac.il
http://dx.doi.org/10.1016/j.cor.2016.03.010
http://dx.doi.org/10.1016/j.cor.2016.03.010

denoted by = …p j n, 1, ,j . dj is the due-date of job j, = …j n1, , .
We denote by P the sum of all the processing times (= ΣP pj). For a
given job sequence, Sj and Cj are the job starting time and com-
pletion time, respectively, = …j n1, , . We note that if job j starts
processing after its due-date, it is not penalized. Otherwise, the
penalty is a function of the early part of the job. Thus, if a job is
completed prior to the due-date, its penalty is identical to its en-
tire processing time. Formally, let = { { − } }EW d S pmin max ,0 ,j j j j de-
note the Early Work of job = …j j n, 1, , . An identical definition is
the following:

=

≤

− ≤ ≤
≤

⎧
⎨⎪

⎩
⎪⎪

EW

p C d

d S S d C

d S

if

if

0 if
j

j j j

j j j j j

j j

The objective function considered here is minimum total Early
Work, i.e.,

{ }∑=
=

EW min EW .
j

n
j1

3. NP-hardness

In this section we prove by a standard reduction from 2-Par-
tition, NP-hardness of the problem of minimizing total early work
on a single machine.

2-Partition: Given a set N of n integers: = …a j n, 1, ,j , and
∑ =∈ a b2 ,j N j is there a subset ⊆S N , such that ∑ =∈ a bj S j ?

We construct the following instance of the recognition version
of our scheduling problem (denoted RC) as follows:

There are +n 1 jobs with:

= = … =+p a j n p, 1, , ; 1.j j n 1

= + = … =+d b j n d b1, 1, , ; .j n 1

Is there a schedule with total early work not larger than b?
(2-Partition⟹RC): If a solution to 2-Partition exist, schedule

the jobs of the set S to start at time zero (and completed at b), then
schedule job +n 1 and then the remaining jobs. The total early
work is clearly b.

(RC⟹2-Partition): We claim that if a schedule exist with total
early work not larger than b, it must contain job +n 1 to start at
time b (implying that a subset of the jobs must be completed
exactly at time b, as required). Consider an optimal schedule q
with job +n 1 starting at time + ∆ ∆ >b , 0. Due to the non-delay
property, the total early work is + {∆ }>b bmin , 1 , contradicting
the optimality of q. Consider now an optimal schedule ′q with job

+n 1 starting at time − ∆ ∆ >b , 0. Job +j 1must be either early or
partially early, and its earliness work is {∆ }min , 1 . As above, due to
the non-delay property, the total early work is + {∆ }>b bmin , 1 ,
contradicting the optimality of ′q . ∎

4. A dynamic programming solution algorithm

In this section we present a pseudo-polynomial dynamic pro-
gramming algorithm for the problem, implying that the problem is
NP-hard in the ordinary sense. We begin by introducing two
properties of an optimal schedule.

Property 1. There exists an optimal schedule consisting of a set of
fully early jobs, followed by a set of fully late or partially late jobs.

Proof. Consider an optimal schedule S in which job k precedes job j,
job k is fully or partially late and job j is fully early. Assume that in S a
set of jobs B is scheduled prior to k, and a set of jobs A is scheduled
after job j. Create a new schedule ′S bymoving job j to be scheduled at
time zero. Note that: (i) (′)= ()=EW S EW S pj j j; (ii) (′) ≤ () ∈EW S EW S i B,i i

(the jobs in B are delayed in ′S by an amount of pj); (iii)
(′) ≤ ()EW S EW Sk k (job k is delayed in ′S by an amount of pj); (iv)

(′) = () ∈EW S EW S l A,l l (the jobs in A are not affected when moving
job j). It follows that ′S is optimal as well. By repeating this procedure
for all pairs of jobs where the first is not fully early and the second is
fully early, we obtain an optimal schedule consisting of a first set of
fully early jobs followed by a set of fully or partially late jobs. ∎

Fig. 1. The state variables and the possible decisions at stage +j 1 of the DP.

Table 1
Data for Example 1.

Job 1 2 3 4 5 6 7
pj 9 6 10 6 10 2 5

dj 6 16 22 32 40 50 55

Fig. 2. Solution of Example 2 (total early work contains the processing times of jobs 6 and 7, and two units of job 5).

Y. Ben-Yehoshua, G. Mosheiov / Computers & Operations Research 73 (2016) 115–118116

Download English Version:

https://daneshyari.com/en/article/475408

Download Persian Version:

https://daneshyari.com/article/475408

Daneshyari.com

https://daneshyari.com/en/article/475408
https://daneshyari.com/article/475408
https://daneshyari.com

