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a b s t r a c t

The splitting method is a well-known method for rare-event simulation, where sample paths of a Markov
process are split into multiple copies during the simulation, so as to make the occurrence of a rare event
more frequent. Motivated by the splitting algorithmwe introduce a novel global optimization method for
continuous optimization that is both very fast and accurate. Numerical experiments demonstrate that the
new splitting-based method outperforms known methods such as the differential evolution and artificial
bee colony algorithms for many bench mark cases.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Randomized algorithms have shown to be of significant benefit
for solving complicated optimization problems. In particular, such
methods are of great use in finding (near) optimal solutions to
highly multi-modal functions, “black-box” problems where gra-
dients are difficult to obtain, and problems with complicated
constraints. Since 1960s many well-known random algorithms for
optimization have been proposed. Many of these algorithms can
be viewed as population Monte Carlo algorithms, where a sample
(population) of individuals is modified randomly over time in or-
der to produce a high-performing sample according to some
chosen objective. Often such algorithms are nature-inspired. Ex-
amples include evolution strategy (ES) [1], evolutionary pro-
gramming (EP) [2], genetic algorithms (GA)) [3] and, more re-
cently, the cross-entropy (CE) method [4], differential evolution
(DE) [5], particle swarm optimization (PSO) [6], ant colony opti-
mization(ACO) [7], fast EP (FEP)[8], artificial bee colony (ABC) [9]
and many other inventive methods based on the principle of ex-
ploration and exploitation.

The splitting method is a well-known method for rare-event
simulation, where sample paths of a Markov process are split into
multiple copies during the simulation, so as to make the occur-
rence of a rare event more frequent. The purpose of this paper is to
introduce the “splitting” idea to the optimization toolbox for con-
tinuous optimization, and to show that the approach, when

reduced to its core elements, can outperform other well-known
methods in terms of accuracy and speed.

To motivate the splitting technique, we draw on various ideas
from rare-event simulation. It has been realized for some time that
the problem of minimizing a complicated continuous or discrete
function ( )S x , ∈x is closely related to the efficient estimation of
rare-event probabilities of the form γ( ( ) ≤ ) S X , where X is a
random element of , distributed according to a given probability
density function (pdf), e.g., the uniform pdf on . The latter re-
quires efficient sampling from the level set γ{ ∈ ( ) ≤ }Sx x: . By
gradually decreasing γ the level set becomes smaller and smaller
until it only contains elements that lie close to the minimizer of S.
For γ close to the minimum, the event γ{ ( ) ≤ }S X will be very rare.
Hence, it is useful to apply rare event simulation techniques to
optimization problems. This is, for example, the premise of the
cross-entropy (CE) method, which aims to find a sequence of pdfs
f1, f2, f3, … that converges to the pdf that concentrates all its mass
in the set of points where S is minimal. In the CE method the
densities …f f, ,1 2 are parameterized by a fixed-dimensional
parameter vector, which is updated at each iteration using the
cross-entropy (or Kullback–Leibler) distance. If instead a non-
parametric approach is taken, the densities can be represented by
a collection of particles, whose distribution is updated at each
iteration. This is where the splitting method enters the scene.

The splitting method was first put forward by [10] for time-
dependent Markovian models and later generalized in [11] to both
static (that is, not involving time) and non-Markovian models. The
latter modification is called Generalized Splitting (GS), which will
be the focus of our discussion below.

The purpose of GS method is to estimate the rare-event prob-
ability γ( ( ) ≤ ) S X for some (small) γ, where X has a specified
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nominal distribution. This is done by first defining a sequence of
levels γ{ }t decreasing to γ and then constructing a sequential
sampling scheme that samples from the conditional distribution of
X given γ{ ( ) ≤ }S X t . Note that if γ is equal to the minimum of S,
then sampling X conditional on γ{ ( ) ≤ }S X is equivalent to sam-
pling from the minimizer of S. However, the problem is that in
general the minimum value is not known, and hence the inter-
mediate values γ{ }t have to be determined adaptively. This is the
motivation for the ADAptive Multilevel splitting algorithm (ADAM)
in [12,13]. The ADAM algorithm has be applied to mostly combi-
natorial optimization problems. For continuous optimization,
where the nominal distribution is taken to be uniform, the ADAM
algorithm is generally more difficult to apply, as sampling X
conditional on γ{ ( ) ≤ }S X t may be too time-consuming or
complicated.

In this paper we propose to replace the complicated sampling
step in the ADAM algorithm with a simpler one, while retaining
the other features. Instead of sampling (at stage t) from the uni-
form distribution on the difficult “level set” γ{ ( ) ≤ }Sx x: t , our
sampling scheme involves sampling from a collection of multi-
variate normal distributions, using a Gibbs sampler. The mean
vector and covariance matrix of the normal distributions are de-
termined by the current population of individuals. This simplifi-
cation greatly increases the applicability of the ADAM method,
making it competitive for continuous optimization. We compare
the method with the best performing algorithms in this area and
demonstrate that it can outperform them for a suite of established
test functions.

The rest of the paper is organized as follows. In Section 2, we
review the mathematical framework of the GS and ADAM algo-
rithms, and put forward the new splitting idea for continuous
optimization. For easy comparison we summarize two well-per-
forming algorithms, DE and ABC, in Section 3. In Section 4, we
employ a popular suite of test functions to evaluate the perfor-
mance of the proposed optimization technique. We describe the
precise settings of the numerical experiments and show the
comparison between DE, ABC, and the new splitting algorithm for
continuous optimization (SCO). Finally, in Section 5, we further
discuss the results of the numerical experiments, and compare the
proposed algorithm with other algorithms via existing compara-
tive studies.

2. Mathematical framework and algorithms

2.1. Mathematical framework

Let ( )S x be a continuous function on n. We wish to find the
minimum γ = ( )⁎ S xminx and the global minimizer = ( )⁎ Sx xargminx ,
assuming for simplicity that there is only one minimizer. Let f be
some “nominal” pdf f, e.g., the uniform pdf on some bounded subset
of n. Suppose first that γ⁎ is known. To find the corresponding ⁎x
we could sample a random vector X conditional on the rare event

γ{ ( ) ≤ }⁎S X , which basically means sampling from the argmin set
{ }⁎x . This can be done using the GS method by sampling iteratively
from intermediate (increasingly rare) events γ{ ( ) ≤ }S X t , for levels

γ γ γ γ γ∞ = ≥ ≥ ⋯ ≥ ≥ =−
⁎

T T0 1 1 . Define the level set of S corre-
sponding to level γt to be the set γ{ ( ) ≤ }Sx x: t . We call it the γt-level
set for short. Let ft be the conditional pdf of ∼ fX given γ{ ( ) ≤ }S X t ;
that is, ( )f xt is proportional to ( ) γ{ ( )≤ }f Ix S x t . In particular, we are in-
terested in sampling from ( ) = ( ) ∝ ( ) γ

⁎
{ ( )≤ }⁎f f f Ix x xT S x . The GS

method works as follows.
Given the sequence of intermediate levels γ = …t T, 0, ,t , and an

initial sample (population) 0 from =f f0 , execute the following
two phases at each iteration t, from t¼0 to = −t T 1:

(a) Let γ= { ∈ ( ) ≤ }+ +Sx x:t t t1 1 , which is referred as the elite set
of t . Its size is denoted by +Nt 1. Note that the elite elements
are distributed according +ft 1.

(b) Split the elite population in +t 1 to create the next population
+t 1, distributed according to +ft 1. Increase t by one and go to

Step (a).

The splitting step (b) can be implemented in many different ways;
for example, in [12] it is done by running a Markov chain on the
γtþ1-level set starting from each point in the elite set +t 1 and
storing each state in +t 1. The only requirement is that the Markov
chain has stationary pdf +ft 1.

Fig. 1 illustrates how the splitting is performed on a typical
problem in 2-D space. Here, there are three levels, γ =t, 1, 2, 3t ,

and the initial sample set is = { … }X X, ,0 1 5 , where … ∼ fX X, ,1 5
iid

0.
Since two of the five initial points, namely X1 and X2, are such that

( )S X1 and ( )S X2 are below the γ1 threshold, we have that =N 21 .
The elite points X1 and X2 are the starting points of two Markov
chains, whose stationary pdf is f1. The length of each Markov chain
is called the splitting factor. In this case, the GS algorithm uses the
same splitting factor, 5, for each chain. This is called GS with Fixed
Splitting.

Thus, we have two Markov chains on the γ1-level set that start
from X1 and X2 respectively and run for 5 steps, which are plotted
in thicker lines. For the Markov chain starting from the point X1,
two of five points have entered the γ2-level set, say X1,3, X1,4, while
only one point of the Markov chain starting at X2 has reached the
next level, namely, X2,2. So, =N 32 . In the final stage, we start three
independent Markov chains (of length 5) on the γ2-level set from
points X1,3, X1,4 and X2,2 with the stationary pdf f2. Of all the points
generated in the last stage, four have reached the final level set, so

=N 43 .
In practice γ⁎ is not known and therefore one cannot determine

the intermediate levels beforehand. Instead, one can determine
them adaptively via the ADAM algorithm. This involves a rarity
parameter ϱ. Having again an initial sample set 0 from f0, the
ADAM algorithm modifies the two steps of the GS algorithm as
follows:

(a) Calculate the function value ( )S x for each ∈x t and sort these

Fig. 1. Illustration of the GS algorithm in 2-D space.
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